

www.c/lforum.org

Fundamentals of CO₂ Storage in Geological Media

www.c/lforum.org

CO₂ Capture and Storage Chain

Pipeline Transport

www.c/lforum.org

Process Scales for CO₂ Geological Storage

Relevant CO₂ Properties, CO₂ Trapping Mechanisms, Means and Media for CO₂ Geological Storage

www.c/lforum.org

Phase Diagram for Carbon Dioxide

Carbon Sequertration leadership forum www.cslforum.org CO₂ Density for Pressure and Temperature Conditions in the Earth Crust

www.c/lforum.org

Variation of CO₂ Density with Depth and Geothermal Regime

Trapping of CO₂ in the Pore Space at Irreducible Saturation

www.c/lforum.org

www.c/lforum.org

Carbon Dioxide Solubility in Water

In pure water

In brine

www.c/lforum.org

Sequence of Geochemical Reactions between CO₂ and Formation Water and Rocks

- 1. Solubility Trapping
 - $\text{CO}_{2(g)} \leftrightarrow \text{CO}_{2(\text{aq})}$
- 2. Ionic Trapping
 - $H_2CO_{3(aq)} \leftrightarrow HCO^{-}_{3(aq)} + H^+$
- 3. Mineral Trapping

 $\begin{array}{l} CO^{2\text{-}}_{3(aq)} + Ca^{2\text{+}} \rightarrow CaCO_{3(s)} \\ HCO^{\text{-}}_{3(aq)} + Ca^{2\text{+}} \rightarrow CaCO_{3(s)} + H^{+} \end{array}$

 $CO_{2(aq)} + H_2O \leftrightarrow H_2CO_{3(aq)}$

$$HCO_{3(aq)} \leftrightarrow CO_{3(aq)} + H^+$$

Aqueous Species Dominance Diagram

www.c/lforum.org

www.c/lforum.org

CO₂ Trapping Mechanisms

> Physical Trapping (in free phase)

- In Static Systems (no flow)
 - In large man-made cavities
 - In the pore space in stratigraphic and structural traps
 - Mobile (continuous phase able to flow)
 - At irreducible saturation (immobile residual gas)
- In Dynamic Systems (flow in long-range regional-scale systems

Chemical Trapping

- Adsorbed onto organic material in coals and shales
- Dissolved in formation fluids (oil or water)
- Precipitated as a carbonate mineral (irreversible process)

www.c/lforum.org

Temporal Scales of CO₂ Injection and Geological Storage Processes

From IPCC SRCCS, 2005

www.c/lforum.org

Relation between Time, Trapping Mechanisms and CO₂ Storage Security

From IPCC SRCCS, 2005

Required Characteristics of Geological Media Suitable for Storage of Fluids

- Capacity, to store the intended CO₂ volume
- Injectivity, to receive the CO₂ at the supply rate
- Containment, to avoid or minimize CO₂ leakage

www.c/lforum.org

Rocks Suitable for CO₂ Storage

- Igneous rocks
 - Rocks formed from cooling magma
 - Granite
 - Basalt
- Metamorphic Rocks
 - Rocks that have been subjected to high pressures and temperatures after they are formed
 - Schist
 - Gneiss

- ✓ Sedimentary rocks
 - Rocks formed from compaction and consolidation of rock fragments
 - Sandstone
 - Shale
 - Rocks formed from precipitation from solution
 - Limestone

Crystalline Low porosity Low permeability Fractures

Granite

Crystalline Low porosity Low permeability Fractures

Schist

High porosity High permeability Few fractures

Geological Media Suitable for CO₂ Storage

 Porous and permeable rocks (sandstone and carbonate) overlain by tight rocks (shales and evaporitic beds):

www.c/lforum.org

- > Oil and gas reservoirs
- Deep saline aquifers
- Coal beds
- Salt caverns
- All are geological media found ONLY in sedimentary basins

Means for CO₂ Geological Storage

As a byproduct in energy production operations

- In oil reservoirs in enhanced hydrocarbon recovery
- In coal beds in enhanced coalbed methane recovery

In disposal operations

- In depleted oil and gas reservoirs
- In deep saline aquifers

 In salt caverns (mainly as a buffer in CO₂ collection and distribution systems)

www.c/lforum.org

Means of CO₂ Geological Storage

www.c/lforum.org

Example of Subsurface Temperature and Pressure for CO₂ Storage

p= 10⁵ Pa + 1,000 kg/m³ x 9.81 m/s²*1,250 m = 12.36 MPa (123.6 bar)

www.c/lforum.org

CO₂ Phases in a Transportation and Storage System

Carbon dioxide: Temperature - pressure diagram 100.000,0-Melting line **Supercritical** 1000,0 Fluid **Pipeline** Transportation 1.600 m \mathbf{x} 1.250 m CO₂ Solid CO₂ Liquid 100,0 900 m Pressure (bar) Saturation line Critical Point (31.1°C, 7.38 MPa) \bigstar 500 m 10,0 Subimation line 200 m Triple Point CO₂ Vapour 1,0 Sublimation Point Leak in the atmosphere 0.1 -100 -90 -80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 Temperature (°C)

Storage Depth is Defined by CO₂ Density

www.c/lforum.org

- Storage below 800 m
 - Supercritical CO₂
 - Dense phase CO₂ (500 to 800 kg/m³); Water is1.3 to 2 times denser (heavier)
 - Low viscosity (0.04 to 0.06 MPa·s);
 Water is 10-20 times more viscous
- Rule-of-thumb
 - Depends on P and T profile
 - Will vary from site to site
 - Watertable depth
 - Mean annual surface temperature and geothermal gradient

Carbon Sequestration Leadership Forum www.cslforum.org Prospectivity of Sedimentary Basins for CO₂ Storage

- Three primary conditions
 - Sedimentary rocks with storage reservoirs and seals
 - Pressure and temperature greater than critical values (31°C, 78.3 bars)
 - Not a source of drinking water

www.c/lforum.org

Controversial Storage Media

Among the media proposed for CO₂ storage:

- 1. Storage in coal beds:
 - Has never been successfully demonstrated
 - Uneconomic coals have not been defined
- 2. Storage in shales rich in organic material:
 - Based on the same principles as storage in coal beds
 - Has not been attempted and demonstrated
 - Will require fracturing the shale, which constitute the caprock for hydrocarbon reservoirs and deep saline aquifers
- 3. Storage in basalts (based on rapid geochemical reactions)
 - Very controversial because of basalts' high porosity and permeability
 - A test is attempted in western Washington state

Concluding Remarks

- CO₂ can be trapped in free phase, mobile and/or immobile, in solution in formation water or oil, adsorbed onto coal or organic-rich shales, and as a mineral precipitate in the pore space or in basalts
- CO₂ can be stored in oil and gas reservoirs, deep saline aquifers, uneconomic/unmineable coal beds, salt caverns, and possibly in organic-rich shale beds and basalt flows
- Various trapping mechanisms operate on different temporal time scales that need to be taken into account

www.c/lforum.org

Contact:

Dr. Stefan Bachu

Alberta Innovates – Technology Futures stefan.bachu@albertainnovates.ca

Associate Editor (Storage)