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Overview

* |ntroduction:

* Weyburn-Midale: Location, Reservoir, EOR, Storage

» A decade of Research for the Weyburn-Midale Project
« Organisation of the Project

 Theme 1: Geological Integrity
 Theme 2: Wellbore Integrity
 Theme 4: Risk assessment

 Theme 3a: Geophysical Monitoring
 Theme 3b: Geochemical Monitoring

 Summary

Workshops on CCS: March 21 — 23, 2012, Mexico City



Weyburn-Midale Reservoir

Weyburn
* Discovered 1954
« OOIP ~1.4 Billion BBLS

 Field size 70 sg miles
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Midale
* Discovered 1954
« OOIP ~0.5 Billion BBLS

 Field size 40 sg miles
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Weyburn-Midale Reservoir

N

Mississippian-aged carbonates of the
Midale Member (Charles Fm): upper
“Marly” and lower “Vuggy”

Reservoir Is ~ 20 m thick, fractured
~ 1500 m depth, ~ 4000 wells

Production: 25-34 APl medium sour oil
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CO, Capture

» CO, supplied by Dakota Gasification
company (Great Plains Synfuels Plant),
Beulah, ND, USA

* CO,-Injection started Oct. 2000

* By End of 2010, 20 million tonnes have
been captured

[ ] .
Regina Manitoba
Weyburn
Saskatchewan Estevan
; Canada
Montana USA
North Dakota
<@ Bismarck
Beulah ¢




Weyburn CO, EOR Project

» combination Horiz/Vert & Prod/In;
* miscible/near miscible CO, injection

 Phase 1A: 19 inverted 9-spot patterns
» Pattern strategies: SSWG, WAG, SGI

. Hz CO; Injector Vertical Water
Vertical

Injectors
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Shallow water well to the north of Weyburn
First exploration wells close to towns and rﬂadSW’ -
Wevburn and Midale fields in production
7oo wells drilled bv the end of the decade
The drilling passes the 4,000 {ﬂar.f-: |
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bbl/d
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45,000 -

40,000 -
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25,000
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15,000 -

10,000 -

5,000 -

Weyburn Unit Production %@.

» 80% of Unit production is from EOR

area
* Original 19 Phase 1A patterns

initiated in 2000-2001 account for 42%
of EOR production

Vertical Infills

Pre CO2
Hz Infills
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Primary Wedge
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CO: Storage (million tonnes)

Storage Estima__@es

60.0

IEA Estimated CO, Storage = ~55 MT

A
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IEA-GHG Project Overview

Launched in July 2000 by PTRC in
collaboration with EnCana

Assess technical and economic feasibility
of CO, geological storage

Funded by 15 industry and government -
sponsors (Canada, USA, Japan, European IEA GHG WevBURN

Union) €02 MoniToRING & STORAGE PROJECT
Summary Report 2000-2004

Employed 24 technology organizations and
some eighty specialists in six countries

Phase | completed September 2004

. P ‘@) ptrc
Final Phase: initiated 2005
planned 2008-2012 ey A
Canadd &) .5, REGINA
Best Practices Manual released this fall I

download: http://www.ptrc.ca/siteimages/Summary_Report 2000 _2004.pdf 15MB



Project Organization

Phase 1: Organized into 4 themes:

« Theme 1. Geological
Characterization of the Geosphere
and Biosphere

* Theme 2: Prediction, Monitoring,
and Verification of CO,
movements

 Theme 3: CO, Storage Capacity
and Distribution Predictions and
the Application of Economic Limits

« Theme 4: Long Term Risk
Assessments of the Storage Site

EEEEEE

COz MONITORING

Final Phase:

* Non-Technical Component
@ REGULATORY
@ PUBLIC COMMUNICATIONS
@ FISCAL POLICY

« Technical Components
@ GEOLOGICAL INTEGRITY
@ WELLBORE INTEGRITY

@ STORAGE MONITORING
METHODS (Geophysics &
Geochemistry)

@ RISK ASSESSMENT



Theme 1: Overview

* Phase 1: Geological Characterization
- Regional Study / Framework
- System Model / Geological Model

* Final Phase: Geological Integrity
- what is new?
- what is important for monitoring?



Saskatchewan

Alberta ystem Model
~ (10 km beyond EOR)

Montana
? J

Wyoming



« 10 km beyond CO,
flood limits J—

» Geological
architecture of
system

* Properties of system:
— lithology

— hydrogeological
characteristics

— hydrochemistry
— poro/perm
— faults

idale Evaior/it% projected plane of
Souris River fault

20X Vertical Exaggeration

Midale Be{dsx» -3




Theme 1: Final Phase

 Overall — assess gaps from Phase | associated with
site characterization

« Update Geological Model

* Natural Analogue

* Regional Seismology

* CO, Movement above the Watrous: Fill-spill Analysis

* Numerical Simulation

Contribute to Best Practices Manual



Core Permeability (k-90)
(Upper Midale Beds)
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27 Tops picked in each of over 900




Update

CAMBERLY GOODWATER 13-2-5-14 GRAND BOW ET AL WEYBURN 8A 235 14 PCP ET AL WEYBURN UNIT D8-23-6-14 STARTECH ET AL WEYBURN 9-36-6-14 ZARGON RALPH 13-33-7-13 STARPOINT ET AL MANSUR 16-33-8-13
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Frobisher Beds ' 95{’3_'5.0.”7
2 Altered Oungre Frobisher
Zone Evaporite Evaporite
Altered Zone ' ormation

Zone of anhydritization and dolomitization along the
unconformity.

Frobisher Evaporite

Lower evaporate sealing unit (where present)

Charles Formation

Mississippian

Madison Group

Oungre Evaporite

Pervasive anhydrite unit within the Ratcliffe Beds .

Mission
Canyon
Formation

Also: Belly River to surface, well 0

T



TDS in cr§§’~ shn

Watrous Aquitard

Poplar Beds

Ratcliffe Beds

Midale Evaporite

101/16-33-8-13W2

Midale Beds

Frobisher Beds

______________

_________________

Midale Aquifer
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200 000
1175000
150 000

125 000

100 000

75000

50 000
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Natural Analogue

Accumulations Weybum - Carbonate Mingrals

O Midale

West
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The cabonate-caprock assemblage in the eastern portion of the

Williston basin have successfully “sequestered” CO,, for 50 million

years. How can natural analog “success” be translated to Weyburn

Injection?

* Duperow vs. Midale?

» Dinsmore evaporite vs. Midale Evaporite?

» Mineralogy and mineral compositions are indistinguishable.

* Rock types identical with anhydrite-rich lithologies as seals.

» Whole rock chemistry overlaps, except for silica, but silicate
minerals present are un-reactive.

* Porosity distributions like the Midale Vuggy.

DDDDDDD




Regional Seismology
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Regional line for-910362’ (right) and 3D volume cross-line (left).
Wavelet transform of both datasets, balanced both frequency spectra, providing accurate tie
between the recent and vintage seismic information and enhanced the near—vertical structural disturbances.



CO, Movement aboVe
* Belly River: 11 traps, 14 wells, 40 kt
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Migration Scenarios 8
Very leaky wells: 8 microns (5mD) * Newcastle: 2 pooIs 75 wells brea
Breach: Colorado, 75 wells - n

Capacity: 2.8 Mt @E

Newcastle: 60 kt
Mannville: 2.4 Mt

— Jurassic: 340 kt ' | v A
Newcastle: 2 small pools, 60 kt LS -
Mannville: 19 of 20 largest pools, 1.7 Mt .
Jurassic: 18" largest pool, 59 kt

* .

° S 9
— |« Jurassic: smaII pools breach Ioca ly . Mannwlle 20 pools, N|-NE°,,_

permeability, threshold pressure, porosity, gas saturation added to the model



e Newcastle: 2 pools, 75 wells breach
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Numerical Simulation: SSWG Pattern 1 (P1612614)
Model | and Model II

i (E . ( )

k(1-4) - Marly

i | (5-11) -
Vuggy

Pattern1 (22 x 21 x 9)

Pattern 1 (44 x 42 x 11
(shaded area) attern.1 (44 x 42 x B4

< (shaded area)
Buffer

Buff
(outside the shaded area) uffer

(outside the shaded area)

3D view for the base case simulation field 3D view for the simulation field

Alberta

Innovates

Technology
< ' Futures




History Match Simulations

Overall Field Productions - Base Model-l vs. Fine Grid Model-lII

4.0e+6

p (cf:oarse grid)
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—— buse case (écourse grid)
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im data
0 O+~ T T i 5,000
1960 1970 1980 1990 2000 2010

Time (Date)

Alberta
Innovates
Technology
Futures

Grid effect is clearly
noticeable on the
overall field production
and pressure data



History Matching Simulations

Role of Gride Size and Mechanical Dispersion on CO,
: Distribution in Oil Phase

no dispersion

coarse grid,
year 2010

year 2006 year 2008
"""""" 1 with dispersion,
' ;=500 m, a;=100 m
fine grid,
year 2010 » CO, spreads larger area in the coarse grid model

« Grid effect is clearly noticeable
» Mechanical dispersion plays a significant role

Alberta
Innovates
Technology
Futures



Theme 2 — Wellbore Integrity: Overview

-

Task RP |
Weyburn wellbore database UofA
Numerical simulation of wellbore systems UofA

Compilation/Review of existing practices,
CO,/EOR (etc.)

T.L. Watson & Assoc.

Casing corrosion study

Ohio U. (Institute for
Corrosion & Multiphase
Tech.); RAE Inspection

Well integrity - Downhole testing program
—> Tool development
- Program implementation

Opsens Solutions




Borehole
Diameter

-1995

0 1956-1967
W 1986-1987

01991
0 1998-2001

Wellbore Database

P
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Wellhead
Cement
Annulus Cement
Production Casing
Surface Casing
Production Casing
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Water, Oi
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Cement Details Report

¢

G H G
I-MIDALE

NITORING

101011100614W200 LICENSE #: 87G007
SPUD: 13/07/1987
LEAD SHOE INTEGRITY - SURFACE CASING @ 180 mKB CMTSLUR ID: 554 mK8
Class "A" +3% CaCl2
Bore Hole Diameter 311 mm
Slurry Mass X 1000kg/ 1400 tonnes Casing Diameter 219 mm
. 1869 kg/m3 Class "A"+
Slurry Density Average Annular Area 0.0383 m2 3% CaCl2
Calculated Slurry Volume 749 m3 Calculated Cement Base 180 mKB
et @ Clodstedcement (/00383 )
From Well File? mKB
Well File Slurry Volume m3
Calculated Cement Top mKB 180.0mKB
LEAD SHOE INTEGRITY - SURFACE CASING @ 180 mKB CMTSLUR ID: 554 mK8
Class "A" + 3% CaCl2
Bore Hole Diameter 311 mm
Slurry Mass X 1000kg/ 1400 tonnes Casing Diameter 219 mm e
. ass"A"+
Slurry Density 1869 ke/m3 Average Annular Area 0.0383 m2 3% CaCl2
Calculated Slurry Volume 749 m3 Calculated Cement Base 180 mKB
- Calculated Cement ( 7.49/0.0383 )

Is Slurry Volume Directly 0

Column Length

m e




Well Inte

JOB TITLE :
—X\
FLAC (Version 4.00 . IEA G H G
(version 4.00) rock formation e
LEGEND . AND STORAGE PROJECT
cement annulus

30-Aug-06 11:55
step 143

-1.750E-01 <x< 1.750E-01 | 0075
-1.750E-01 <y< 1.750E-01

Grid plot steel casing

[ |
| 0.025

0 1E-1

I T
-0.125 -0.075 -0.025
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Literature Review and Data Studies

» Best practices for CO, storage
« Best practices for Well Abandonment
 Literature Review for Corrosion in Wellbore Steel



Downhole Testing Program

Testing Program Elements
1. Cased-hole logging

2. Pressure transient (vertical interference) tests

3. Cement sampling (with CemCore tool)
4. Mini-frac tests

5. Fluid sample — Gravelbourg { i b e e
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CemCore Tool

 Dimensions anticipated for the cores are 9.5 mm
(3/8 inch) diameter and 38 mm (1.2 inch) length.

* Retained in the tool’s cutter then brought to surface.




PPT TOOI (pore pressure transmission)

4 Isolation Packers
Feed through N, inflation lines
Flow Iinput ports
<4in Max OD

/ * 8 pressure/temp sensors

« 4 Isolation feed through

Coiled Tubing Super Connector
4 independent Y4 inflation lines
2 Y4 sensor lines



PPT Tool

Run on Coiled Tubing

EaRL i
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Theme 4: Risk Assessment

“ Risk can be managed, minimized, shared,
transferred, or accepted. It cannot be

ignored.”l “All I’'m
saying is
NOW is the
time to
develop the
technology to
deflect an
asteroid”

1Latham, M. 1994. Constructing the Team. Final report of the government/industry review of procurement and contractual
arrangements in the construction industry. HMSO, London.



Terminology

A

Biosphere

Containment Risk




Fundamental CO, storage project requirements

The Project has to be able to demonstrate that it will generate greenhouse benefits.

The storage will retain most of the CO, injected

Geosphere risk assessment

The storage will receive an adequate volume of CO,

«+—— Effectiveness risk assessment

Containment risk assessment

|||||

The Project has to be able to demonstrate that it will not pose a threat to the community or its assets.

The stored CO, will pose acceptable risk to:
spublic safety
scommunity assets (environment, amenity etc)

Biosphere risk assessment

The Project has to be acceptable to the community.

The community and key stakeholders support the Project

-~ Community engagement




Geosphere & Biosphere Risk  Technical Inputs

» Wellbore integrity research

 Characterisation of reservoir characteristics &
transport of CO,

* Seismicity of area

* Characterisation of CO, reactions in reservoir

» Monitoring techniques & effectiveness

v

Geosphere Risk

Assessment Outputs

| * CO, risk events (initiating event & pathway) &

ranking

* Mass of CO, released if event occurs

» Likelihood of each event occurring & releasing
CO,

A 4

Stakeholder l Other Technical Inputs
Engagement » Characterisation of aquifers
 Characterisation of surface water
Stakeholder  __ Biosphere Risk « Characterisation of soils / sediments
Values Assessment * Behaviour of CO, in soils, sediments,
groundwater, surface water

. * Receptors in environment
Bund_mg * Toxicology (animal, plant, human)
Capacity to
Engage
940 _ Outputs

* Risks to biosphere assets (ranking & severity)
Acceptability of |
Risks 3
|

A 4

Mitigation Measures —



Effectiveness RIsksS

Change to project economics

Lateral migration out of the Weyburn Unit
Change in public perception / regulations
Ability to verify stored CO,

Lack of capacity
Reduced injectivity

Weyburn - Effectiveness Risk Profile

10,000,000

Inadequate source oo} cmmoce-- '-_—_

100,000 =

10,000 =

Effectiveness Risk Quotient
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Process Towards Community Acceptance

Stakeholder communication

Reservoir (Geosphere) risk
assessment

Containment
Effectiveness
CO, risk management

Skills needed:

Geophysics, reservoir engineering,
hydrochemistry, geotechnical,
hydrogeology, operations, gas transport,
natural analogues

¥

Environmental (Biosphere) risk
assessment

Environmental risk management
Environmental asset protection

|

Skills needed:

Biology, ecology, hydrology, social impact
assessment, soil science, agricultural
science, hydrogeology, operations, gas
transport, natural analogues, engineering,
economics, cultural heritage

Community outreach program

g > Local and regional communities
Regulators
Shareholders
International community

Skills needed:
Community education, public relations,
geological storage technology

{

> Stakeholder acceptance




Monitoring: Overview

Site

Characterization

define | initial
\ & bdry | conds

Modeling

measure
performance

predict
performance

N

Carle et al. (2006) =

Elevation (m)

|_|Aquifers [[Interbedded
B Aquitards [llBasement

CO, isolation performance

v Capacity

v Footprint Verification
v Containment

v Risk (CFC uncertainty) Compare results:

resolve discrepancies &
refine MMC capabilities



Geophysical Monitoring: Overview

Introduction
Geophysical Characterization of Rock/Fluid System
Feasibility studies
Downhole monitoring methods
3D Seismic Methods

Time-lapse seismic results

P vs. S, (prestack seismic inversion)
Caprock Integrity - seismic anisotropy
Overburden Monitoring and CO, inventory estimates
Microseismic monitoring
3D time-lapse seismic monitoring without a baseline
Seismic constrained simulation/history matching
Predictive model verification (stochastic inversion)
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Limestone

Carbonate
- Vuggy Shoal

Marly

Fractures

Limestone

Dolostone

14 MPa

Reservoir: 1450 m depth, <30 m thick, T=63°C, P
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Weyburn Field: Phase 1A EOR Area
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Recommendations: Characterization

WEYBURN -MIDALE

Characterizing the local rock/fluid/stress system is essential to:: -
the design and understanding of geophysical monitoring.

Variations in the composition of the CO, injectant can have
significant effects.

Lab measurements on core samples is the most practical
means of characterization.

Supplemental in situ measurements are highly desirable (static
and time lapse logging, pressure, and fluid saturation).



Monitoring Feasibility Studies

* INSAR: regional monitoring of injection-related surface deformation.

« Gravity monitoring: monitoring large injection volumes or shallow leakage
monitoring.

» Require models to interpret what observed changes mean in terms of
subsurface fluid distribution and stress changes.

» Best applied in conjunction with other higher resolution monitoring methods.

 LEERT currently falls into the category of a research method.

LEERT = Long-Electrode Electrical Resistivity
Tomography

- Steel casings as electrodes, inject current and
measure electric field.

- Numerical modeling study

- more resistive the overburden

- and/or the reservoir is significantly shallower
- Small inter-well distances are required,;

- likely have fewer well casings

N
0 5 20 km

N
o ST (mm/yr)



Downhole: Cross-well geophysical methods =

Crosswell methods can provide
higher resolution images of the
subsurface.

Limited by required access to
boreholes, the geometry of
existing boreholes, and provide
limited spatial coverage.

In an EOR setting, borehole
access requires interruption of
production in active wells or
access to abandoned wells.

Usually wellbores do not extend

through the reservoir limiting the  , ,
imaging aperture for transmission = ovko 2 ko
tomography at the reservoir level. 4,

Crosswell techniques are best
suited for monitoring above the
reservoir. In a non CO, -EOR
environment, there may be few
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Downhole: VSP
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Time-lapse VSP data are capable of producing somewhat higher
resolution images of changes in the reservoir over a subset of the area
covered by the surface time-lapse seismic data.

Cover a small area of the reservoir compared to the area of surface
shotpoints used to generate the VSP;

Recording fidelity issues are common either due to sensor coupling in
the wellbore or casing coupling to the wall of the wellbore;

The data provide low fold coverage of the subsurface.
These factors make AVO analysis of the VSP data unstable.



Downhole: Recommendations

Active-source downhole seismic methods (X-well and VSP)
provide higher resolution imaging, but are limited by their
deployment complications and their limited areal coverage.
Best used for experimental purposes or support/calibration of
surface time-lapse seismic.

Permanent passive monitoring array has been very successful
In providing assurance monitoring and constraints on
deformation near the reservoir.

Not suited for tracking CO, plume.




3D-3C Time-Lapse Seismic Data Acquisition

Survey Dates

Date Area A Area B
1999 Baseline -

2001 Monitor I Baseline
2002 Monitor II -

2004 Monitor ITI Monitor I
2005 (May) - Monitor IIa
2005 (Nov) - Monitor IIb
2007 Monitor IV Monitor ITT
2008 Monitor V Monitor IV
2009 Monitor V

Blue: IEA Weyburn Phase I Data

Black: EnCana surveys
cenovus
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Marly Amplitude Differences
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3D Seismic Methods: Recommendations

Overall, provide the most effective means of monitoring the
CO,, distribution over a large area.

Provide depth resolution capable of imaging/detecting CO, in
the reservoir and overburden.

Applicability will depend on local geology.

Effective use in a qualitative sense is demonstrated, but semi-
guantitative use is still limited.

Pressure vs. CO, saturation discrimination is feasible.

Value of multi-component data acquisition is arguable.
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Selsmic Anisotropy

Possible sources:
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AVOA Results: Correlation With Other Studies
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Overburden Monitoring: CO, Inventory
Estimates
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2004-2000 Interval travel time differences
Reseryoir Above Reservoir Above 1%t Regional

I 2
— 1
— 0
Crude Accounting Estimates: -1
% Mass (Mt)
Reservoir 83.0 3.07
Watrous 15.6 0.58 )

Above Watrous 1.4 0.05



Microseismicity
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Y (m)

Stress Distribution: Vertical Injectors

Small moment magnitudes (-3 to -1)
Low rate of seismicity: aseismical deformation

Modelling to assess significance of observation
Events likely due to stress transfer

Overburden MPa
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Summary
« Reservoir Monitoring
* Pvs. CO, discrimination: AP, . up to 7-8 MPa, Sco, up to 60%.
* Predictive model verification: stochastic algorithm tested.
« Caprock Integrity
* |solated anisotropic regions.

* May be associated with vertical fracturing; however, seismic alone
can’t discriminate.

« Qverburden Monitoring

* No significant travel time changes observed above the regional seal;
0-1% of injected CO, based on seismic.

« Small travel time (& amplitude) changes are observed just above the
reservoir caprock (~1380 m) at the base of the storage complex.
Likely associated with OOZ CO.,.

* O0OZ CO, is likely the direct result of EOR injection operations rather
than upward migration of CO, from the reservoir.

« Microseisms observed within the immediate overburden, are likely
due to stress-arching effects in the overburden.




Seismic constrained simulation/history matching

Trial-and-error history matching
a) CO, Distribution from Seismic

2.5




Recommendations: Seismic constrained
simulation/history matching

* Primary means of integrating monitoring observations with
geological model.

 Trial-and-error forward modelling provide time-tested
methodology, but is labour intensive.

 Stochastic inversion (or other comparable methods) In
principle provide an objective way forward, but are
developmental.




Approach is based on the Monte Carlo Markov Chain
(MCMC) method (Mosegaard and Tarantola, 1995) @
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Seismic Inversion Test (Single Injection Pattern)
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Improved site characterization & storage prediction
through stochastic inversion oﬂlepse geophys &

_ geochem data
Research Provider: Abe Ramirez et al. (LLNL)
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Overview: Inverting Geochemical Parameters

* Objectives
« Quantify rates of key dissolution/precipitation reactions

» Assess heterogeneities in distributions of reactive mineral
phases/rates

» Challenges
 Limited spatial resolution of brine compositional data
« Extensive influence of injected water
» Excessive computational burden

« Approach

« Construct realistic synthetic problem to understand key
constraints on water-rock reactions and effects of heterogeneity

* Apply the inversion algorithm to a small-scale test problem (e.q.,
Pattern 16)

« Apply the inversion algorithm across the larger scale



Dissolution / precipitation modeling of various Minerals

Ca?*, 1,000-days of CO, Injection

y (m)

y (m)

800 900



Geochemical indim-
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Trends in geochemical indicators are reproduced by heterogeneous
reactive mineral model: pH, Ca, Mg



Geochemical Monitoring: Overview

Storage Monitoring
Reservoir fluids (brines, gases)
Reservoir fluids (hydrocarbons)
Shallow groundwater
Soil gas

Storage Prediction

Reactive transport modeling (AITF)
Reactive transport modeling (SLB)
Hydrocarbon EOS

Process/Property Studies

CO,-brine-rock interactions
Pore-scale matrix analysis
Fracture transport




Reservoir fluid sampling (brines, gases)

Research Provider

v Bernhard Mayer, Maurice Shevalier, et al.
(Applied Geochemistry Group, Univ. Calgary)

Project scope

v' Continue Phase-1 monitoring of CO,-fluid-rock
reactions & the intra-reservoir fate of injected CO,
by periodic fluid sampling of 40-60 production wells
within & nearby the Phase 1A/1B area

v During Phase 1, a baseline (Aug 2001) & 11 syn-
injection monitoring trips (3/year, M1-M11, Mar
2001 — Sep 2004) were completed

v" During Final Phase, 5 monitoring trips (2/year,
M12-M16: Oct 2008 — Oct 2010) address the same
well suite sampled during M11 (Sep 2004); data
continuity

v 40+ geochemical & isotopic parameters measured;
comprehensive database: ~30k entries to date

v Unique, invaluable history-matching resource for
reactive transport modeling programs




CO,-brine-rock reactions: isotopic evolution

+5 T* carbonate minerals in reservoir

0 " . . . "o
t«- pre-injection” bicarbonate

-10

13C (%.o)

<« “pre-injection” produced CO2

20 b =+ injected CO2

» CO, dissolution increases TDC, lowering produced 8"3C,;cos-
» dissolution of carbonate minerals increases HCO, & produced 8'3C,,q;
» both reactions take place, but net result is lowering of 6°C,;-s-

H* + CaCO,; = Ca?* + HCOy Second 8"C-HCOj; ratio

CO, + H,0 + CaCO; = Ca?* + 2HCO,;  Mixed 8"C-HCO; ratio



Measured pH

Evolution of field-average pH, Alkalinity, $613C
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Reservoir fluids (hydrocarbons)

Research Provider
v Mars Luo et al. (SRC)

Project scope
v" Continue Phase-1 effort:

% Sample & analyze hydrocarbons from
selected production wells (Phase 1A/1B)

» Develop Weyburn-tuned HC EOS
» Determine MMP

- Collect & mix separator oil & gas samples at GOR,;
measure PVT properties of reconstituted live oll
& live 0il-CO, system at reservoir conditions

v' Fit PVT data with phase behavior modeling code
to further tune 7-component PR-EOS formulation
for incorporation into GEM & NUFT

v' Redetermine MMP (rising bubble apparatus)

v Updated HC EOS & MMP required to refine
reactive transport modeling work

*

L)

L)

*

D)

L)

O

e ]

[N[N]

e [ OO
. x :

v Analytical data required for continuity of
valuable history-matching resource




Shallow groundwater sampling

al o Research Provider

oK ¥
BRHE, o
Laaudo™
sio@B-

817

SRS . O
Fe =

v' Harm Maathuis et al. (consultant)

Project scope

Sl v Continue Phase-l sampling/analysis program
. v Re-visit domestic wells sampled previously;
a2 | PP determine current status; sample active wells
N ot s s e v Compare water quality results of 2009 with
those of previous surveys
® 24 private (active) wells could v' Make recommendations for future surveys
be sampled in 2009 v’ Long-term continuous “clean” record is
® Number of active wells has critical from public acceptance standpoint

declined significantly over time
® Reasons for decline:
= owners moving off site
= Weyburn Utility Board pipeline

v' Sampling trip July-Aug 2009



. . A
Conclusions / Recommendations o

Since 2000, little change in water quality; changes in major ions concentrations {%

EEEEEE

(nitrate) have been observed in shallow wells located near barns. i

The percent of exceedance (Saskatchewan standard/objectives) of constituents in
the Weyburn area is consistent with those observed elsewhere in Saskatchewan.

Determining if shallow groundwater is being affected by EOR will be difficult at
best.

Lowering of pH and increase in the bicarbonate concentration expected. However,
pH might be buffered. 313C of bicarbonate might be indicative but not available.

Recommendations:
* For long-term monitoring of the groundwater quality conducting surveys every
three (3) or five (5) years will be sufficient

* To establish baseline data, any future sampling events should include the
determination of the 313C values

* Since the number of private wells likely will decline further and monitoring may
be conducted over decades, consideration should be given to constructing a
network of monitoring wells strategically located throughout the Phase | and Il
areas.



Soil gas monitoring

Ditersen A s | :

e -t Research Provider

. T e, Jrr ey il v David Jones et al. (BGS, SUR, BRGM

2 : R U S ) )

S /X‘M b::f%:f‘..f.;;f:;'iiiz ( )
B ATV L | N

i 42y miyk Project scope

£ - | FERh A RN v Continue Phase-1 & interim Phase 1-2

A) July 2001

2 . e e e effort (2001-2005) [background & Weyburn]
o SR Lt TR f v’ Identify/extract background seasonal variations
v' Source actual anomalies, if identified

v’ Long-term continuous “clean” record is critical
from public acceptance standpoint

v’ Leverages CO,ReMoVe funding, incorporates
advanced techniques (e.g., continuous
monitoring station), & potentially extends
scope to include near-well locations

v Scheduled sampling trips Oct 2009 & Oct 2010




Reactive transport modeling: AITF, SLB, LLNL

Research providers:
v Stephen Talman, Ernie Perkins (AITF)
v' James Johnson (SLB)
v" Tom Wolery, Yue Hao, John Nitao (LLNL)

Project scope

v’ History match produced water compositions
& observed isotopic evolution

v Predict reservoir/seal por/perm evolution &
storage partitioning among distinct
physical/chemical trapping mechanisms

v" Augment NUFT to include a Weyburn-tuned
Peng-Robinson EOS for hydrocarbons
(Zhao et al., 2002; Freitag et al., 2004)

Accurate history matching requires
v' Initial fluid-rock chemistry
v" Injected water compositions
v" Fractured reservoir model



Expt’l/modeling study CO.-brine-rock reactions

Research Provider

v Susan Carroll, Yelena Sholokhova, Megan Smith,
and Yue Hao (LLNL)

Project scope

v Investigate the impact of injecting CO, on reservoir/cap-
rock integrity using open (flowing) system experiments
designed per lab-scale RTM (reactive transport modeling)

v' Reservoir & cap-rock samples from Phase 1A/1B will be
used; P-T will represent reservoir conditions

v This study will greatly improve our understanding of
reservoir/cap-rock permeability evolution as a function of
carbonate diss/pptn in the presence of CO,

v It will also help calibrate & refine our reactive transport
models
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Micron-scale reservoir matrix analysis

Research Provider
v' Tom Kotzer, Chris Hawkes, Ted Mahoney, Michael Bird, and Samuel Butler (Univ. Sask.)

Project scope

v Use micro-beam techniques (conventional & synchrotron) on pre- & post-CO, flood core
from Weyburn to examine the micron-scale 3D pore-space network & distribution of
pore-lining minerals

v Focus is on identifying incipient mineral & petrophysical alteration effects associated with
CO, injection

v Core samples subjected to CO, at reservoir P-T in the laboratory (Carroll, et al.) will also
be analyzed using this approach

v Micro-beam techniques potentially fill a critical gap in our current monitoring arsenal: the
ability to detect CO,-induced mineral diss/pptn effects at typical reservoir conditions over
relatively short time frame; e.g., first few years of a CO, storage project

v Such detection of incipient mineral alteration effects will help calibrate & constrain
reactive transport models.



2-D CMT Slice

Synchrotron CMT

Midale Vuggy (V2)

Thin-section

Porosity

Endothyrid
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Brine/CO, exposure, sample 1E-1

Before exposure After exposure

Distinct
dissolution
features
(wormholes)

Inlet

Subtle, diffuse
dissolution
features; CMT
imaging
required to
assess extent &
character.

Outlet




Micro-scale numerical modeling of flow

*Refinements of pore space filtering and meshing has

EEEEEEEEEEEEEEEEE

enabled flow modeling of larger sub-volumes
(35um x 35um x 35um)

The largest
connected region in
the sub-sample was
isolated, as
highlighted in red.

The sub-
sample was
first surface
meshed in 3D.

|

‘fater boundaries;#
No flow

Geometry was |

extracted for full 3D e _

tetrahedral _ p=

meshing. The solution to the steady state
Navier-Stokes equation.

The color profile represents the
pressure gradient (Red, pressure
=1 : Blue, pressure = 0).



Fracture transport

Research Provider

v Russ Detwiler, Jean Elkhoury, and Pasha Ameli
(University of California -- Irvine)

Project scope:

v' Experimental/modeling study to measure & predict the CO,-
induced evolution of fracture permeability in Weyburn core

v Explicit integration of hydrological, geochemical, geomechanical
processes

v Explore the scaling behavior of these processes using a
computational model that couples geomechanical deformation &
geochemical alteration of fracture perm during reactive flow

v’ Before & after the reactive flow experiments, characterize fracture
surface roughness through measurement of asperity heights using
a high-resolution profilometer & surface mineralogy using SEM

v' CO,-induced alteration of the fluid transport properties of natural
fractures within Weyburn core has yet to be characterized




Experiment EV-1 — Experimental conditions

Original core with open bedding-plane fracture
Experimental conditions:

 Confining pressure = 28.6 MPa

* pCO,=14.3 Mpa

» Constant flow rate = 0.003 mL/min
* Pressure control at inlet

* Duration 29 days

Optical surface profilometry
Measured surface topography

Sub-core prepared for flow-through
experiment ‘ ||
<€ > .
35 mm 7 -

0




Permeability alterations observed during experiment

EV-1 Permeability evolution and differential pore pressure

Hydraulic aperture is in the range (0.65 — 0.90 microns)
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COz MONITORING

Small differences
between before and after
maps:
v likely a result of
registration artifacts

with ‘after’
measurements

or

v N0 measurable
alteration of the fracture
aperture distribution

So, what caused permeability fluctuations?
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