Monitoring. The Weyburn-Midale Project

B. Dietiker Petroleum Technology Research Centre **Geological Survey of Canada**

A G G WEYBURN-MIDALE CO2 MONITORING AND STORAGE PROJECT

Canada

Ressources naturelles Natural Resources Canada

Canada

Overview

Introduction:

- A decade of Research for the Weyburn-Midale Project
- Organisation of the Project
- Theme 1: Geological Integrity
- Theme 2: Wellbore Integrity
- Theme 4: Risk assessment
- Theme 3a: Geophysical Monitoring
- Theme 3b: Geochemical Monitoring
- Summary

Weyburn-Midale Reservoir

Weyburn

- Discovered 1954
- OOIP ~<u>1.4 Billion</u> BBLs
- Field size 70 sq miles

Midale

- Discovered 1954
- OOIP ~0.5 Billion BBLs
- Field size 40 sq miles

IEA GHG Weyburn-Midale CO2 Monitoring and Storage Project

Weyburn-Midale Reservoir

E A G H G VEYBURN-MIDALE CO2 MONITORING ND STORAGE PROJECT

Midale Vuggy

- Mississippian-aged carbonates of the Midale Member (Charles Fm): upper "Marly" and lower "Vuggy"
- Reservoir is ~ 20 m thick, fractured
- ~ 1500 m depth, ~ 4000 wells
- Production: 25-34 API medium sour oil

Weyburn-Midale Area

July, 2011

Weyburn-Midale Area

Apache

CO₂ Capture

- CO₂ supplied by Dakota Gasification company (Great Plains Synfuels Plant), Beulah, ND, USA
- CO₂-Injection started Oct. 2000
- By End of 2010, 20 million tonnes have been captured

Weyburn CO₂ EOR Project

- combination Horiz/Vert & Prod/Inj
- miscible/near miscible CO₂ injection
- Phase 1A: 19 inverted 9-spot patterns
- Pattern strategies: SSWG, WAG, SGI

Weyburn Unit Production

Midale Unit Production

IEAGHG Weyburn-Midale CO2 Monitoring and Storage Project

Storage Estimates

about 9 million cars off the road for a year

IEA-GHG Project Overview

- Launched in July 2000 by PTRC in collaboration with EnCana
- Assess technical and economic feasibility of CO₂ geological storage
- Funded by 15 industry and government sponsors (Canada, USA, Japan, European Union)
- Employed 24 technology organizations and some eighty specialists in six countries
- Phase I completed September 2004
- Final Phase: initiated 2005

planned 2008-2012

Best Practices Manual released this fall

E A G H G Weyburn-Midale CO2 Monitoring

IEA GHG WEYBURN CO2 MONITORING & STORAGE PROJECT SUMMARY REPORT 2000-2004

download: http://www.ptrc.ca/siteimages/Summary_Report_2000_2004.pdf 15MB

Project Organization

IEAGHG Weyburn-Midale CO2 Monitoring and Storage Project

Phase 1: Organized into 4 themes:

- Theme 1: Geological Characterization of the Geosphere and Biosphere
- Theme 2: Prediction, Monitoring, and Verification of CO₂ movements
- Theme 3: CO₂ Storage Capacity and Distribution Predictions and the Application of Economic Limits
- Theme 4: Long Term Risk
 Assessments of the Storage Site

Final Phase:

- Non-Technical Component
 - REGULATORY
 - PUBLIC COMMUNICATIONS
 - FISCAL POLICY
- Technical Components
 GEOLOGICAL INTEGRITY
 - WELLBORE INTEGRITY
 - STORAGE MONITORING METHODS (Geophysics & Geochemistry)
 - RISK ASSESSMENT

Theme 1: Overview

- Phase 1: Geological Characterization
 - Regional Study / Framework
 - System Model / Geological Model
- Final Phase: Geological Integrity
 - what is new?
 - what is important for monitoring?

E A G H G Veyburn-Midale CO2 Monitoring ND Storage Project

Study Region - Geoscience

Geological/Hydrogeological Model

- 10 km beyond CO₂ flood limits
- Geological architecture of system
- Properties of system:
 - lithology
 - hydrogeological characteristics
 - hydrochemistry
 - poro/perm
 - faults

Theme 1: Final Phase

E A G H G Weyburn-Midale CO2 Monitoring No Storage Project

- Overall assess gaps from Phase I associated with site characterization
- Update Geological Model
- Natural Analogue
- Regional Seismology
- CO₂ Movement above the Watrous: Fill-spill Analysis
- Numerical Simulation

Contribute to Best Practices Manual

Update Geological Model

27 Tops picked in each of over 900 wells, all compiled into Petrel.

Core Permeability (k-90) (Upper Midale Beds)

Update Geological Model: New Horizons

TDS in cross-section

Natural Analogue

The cabonate-caprock assemblage in the eastern portion of the Williston basin have successfully "sequestered" CO_2 for 50 million years. How can natural analog "success" be translated to Weyburn injection?

- Duperow vs. Midale?
- Dinsmore evaporite vs. Midale Evaporite?
- Mineralogy and mineral compositions are indistinguishable.
- Rock types identical with anhydrite-rich lithologies as seals.
- Whole rock chemistry overlaps, except for silica, but silicate minerals present are un-reactive.
- Porosity distributions like the Midale Vuggy.

Regional Seismology

E A G H G Weyburn-Midale CO2 Monitoring

Regional line 'for-910362' (right) and 3D volume cross-line (left). Wavelet transform of both datasets, balanced both frequency spectra, providing accurate tie between the recent and vintage seismic information and enhanced the near-vertical structural disturbances.

CO₂ Movement above the Watrous: Fill-spill Analysis

12 Mt

WEYBURN-MIDALE

Mannville: 18 traps, 19 wells,

Migration Scenarios

Very leaky wells: 8 microns (5mD)

Breach:	Colorado, 75 wells
Capacity:	2.8 Mt
Newcastle:	60 kt
Mannville:	2.4 Mt
Jurassic:	340 kt

Newcastle: Mannville: Jurassic:

2 small pools, 60 kt 19 of 20 largest pools, 1.7 Mt 18th largest pool, 59 kt

18

permeability, threshold pressure, porosity, gas saturation added to the model

Migration Scenarios

IEA GН WEYBURN-MIDALE CO2 MONITORING AND STORAGE PROJECT

Numerical Simulation: SSWG Pattern 1 (P1612614)

History Match Simulations

E A G H G Veyburn-Midale CO2 Monitoring ND Storage Project

Overall Field Productions - Base Model-I vs. Fine Grid Model-II

Technology Futures Grid effect is clearly noticeable on the overall field production and pressure data

History Matching Simulations

Role of Gride Size and Mechanical Dispersion on CO₂ Distribution in Oil Phase

E A G H G Veyburn-Midale 202 Monitoring Nd Storage Project

no dispersion

 α_L =500 m, α_T =100 m

- CO₂ spreads larger area in the coarse grid model
- Grid effect is clearly noticeable
- Mechanical dispersion plays a significant role

Theme 2 – Wellbore Integrity: Overview

Task	<u>RP</u>		
Weyburn wellbore database	UofA		
Numerical simulation of wellbore systems	UofA		
Compilation/Review of existing practices, CO ₂ /EOR (etc.)	T.L. Watson & Assoc.		
Casing corrosion study	Ohio U. (Institute for Corrosion & Multiphase Tech.); RAE Inspection		
Well integrity - Downhole testing program	Opsens Solutions		
\rightarrow Tool development			
\rightarrow Program implementation			

Wellbore Database

Cement Details Report

Well Identification

101011100614W200 LICENSE # : 87G007

SPUD: 13/07/1987

LEAD SHOE INTEGRITY - SI Class "A" + 3% CaCl2	URFACE CASING	@	180 mKB	CMTSLUR ID:	554		mKB
Detailed Calculations		Bore Hole I	Diameter	311 m	im		
Slurry Mass X 1000kg/	14.00 tonnes	Casing Diameter		219 m	im	Close "A"+	
Slurry Density	1869 kg/m3	Average Ar	nnular Area	0.0383 m	2	3% CaCl2	
Calculated Slurry Volume	7.49 m3	Calculated	Cement Base	180 m	КВ		
Is Slurry Volume Directly From Well File?		- Calculated Column Lei	d Cement ngth	(/ 0.03 - m	83) KB		
Well File Slurry Volume	m3	Calculated	Cement Top	m	КВ		180.0mKB
LEAD SHOE INTEGRITY - SU Class "A" + 3% CaCl2	URFACE CASING	@	180 mKB	CMTSLUR ID:	554		mKB
Detailed Calculations		Bore Hole I	Diameter	311 m	im		
Slurry Mass X 1000kg/	14.00 tonnes	Casing Dian	neter	219 m	m	Class #A#+	
Slurry Density	1869 kg/m3	Average Ar	nnular Area	0.0383 m	2	3% CaCl2	
Calculated Slurry Volume	7.49 m3	Calculated	Cement Base	180 m	КВ		
Is Slurry Volume Directly		- Calculated Column Lei	d Cement ngth	(7.49 / 0.03	83) KB		

G H G RN-MIDALE ONITORING

Well Integrity Modelling

JOB TITLE :

G WEYBURN-MIDALE CO2 MONITORING AND STORAGE PROJECT

Well Integrity Assessment

Literature Review and Data Studies

IEA GHG Weyburn-Midale CO2 Monitoring and Storage Project

- Best practices for CO₂ storage
- Best practices for Well Abandonment
- Literature Review for Corrosion in Wellbore Steel

Downhole Testing Program

Testing Program Elements

- 1. Cased-hole logging
- 2. Pressure transient (vertical interference) tests
- 3. Cement sampling (with CemCore tool)
- 4. Mini-frac tests
- 5. Fluid sample Gravelbourg

101/08-06-006-13W2

IEA GHG Weyburn-Midale CO2 Monitoring and Storage Project
CemCore Tool

IEAGHG Weyburn-Midale CO2 Monitoring and Storage Project

- Dimensions anticipated for the cores are 9.5 mm (3/8 inch) diameter and 38 mm (1.2 inch) length.
- Retained in the tool's cutter then brought to surface.

PPT TOOI (pore pressure transmission)

IEA GHG WEYBURN-MIDALE CO2 MONITORING

- 4 Isolation Packers
- Feed through N₂ inflation lines
- Flow input ports
- <4in Max OD

- 8 pressure/temp sensors
- 4 Isolation feed through
- Coiled Tubing Super Connector
- 4 independent ¼ inflation lines
- 2 1/4 sensor lines

PPT Tool

IEA GHG WEYBURN-MIDALE CO2 MONITORING and Storage Project

Run on Coiled Tubing

Theme 4: Risk Assessment

"Risk can be managed, minimized, shared, transferred, or accepted. It cannot be ignored."1 "All I'm

saying is **NOW** is the time to develop the technology to deflect an asteroid"

¹ Latham, M. 1994. Constructing the Team. Final report of the government/industry review of procurement and contractual arrangements in the construction industry. HMSO, London.

Terminology

IEA GHG WEYBURN-MIDALE CO2 MONITORING AND STORAGE PROJECT

Fundamental CO₂ storage project requirements

The Project has to be able to demonstrate that it will not pose a threat to the community or its assets.

Mitigation Measures

-

Effectiveness Risks

- Change to project economics
- Lateral migration out of the Weyburn Unit
- Change in public perception / regulations
- Ability to verify stored CO₂
- Lack of capacity
- Reduced injectivity
- Inadequate source

EAGHG EYBURN-MIDALE 02 MONITORING D STORAGE PROJECT

Process Towards Community Acceptance

Stakeholder communication

Monitoring: Overview

IEA GHG Weyburn-Midale CO2 Monitoring and Storage Project

Geophysical Monitoring: Overview

Introduction Geophysical Characterization of Rock/Fluid System **Feasibility studies** Downhole monitoring methods **3D Seismic Methods Time-lapse seismic results** P vs. S_{CO₂} (prestack seismic inversion) Caprock Integrity - seismic anisotropy Overburden Monitoring and CO₂ inventory estimates Microseismic monitoring 3D time-lapse seismic monitoring without a baseline Seismic constrained simulation/history matching Predictive model verification (stochastic inversion)

E A G H G Weyburn-Midale CO2 Monitoring

The Reservoir (Fractured Carbonate)

<u>Reservoir:</u> 1450 m depth, <30 m thick, T=63°C, P=14 MPa <u>Anhydrite seal</u> <u>Marly Dolostone:</u> 6 m thick, 16-38% porosity, 1-50 mD perm <u>Vuggy Limestone:</u> 17 m thick, porosity 8-20%, 10-300 mD perm

Weyburn Field: Phase 1A EOR Area

Characterization: Modelled Field Properties

IEA GHG Weyburn-Midale CO2 Monitoring and Storage Project

Weyburn Field: Phase 1A EOR Area

4D sensitivity to rocks & fluids

E A G H G Weyburn-Midale CO2 Monitoring

After Lumley (2010)

Recommendations: Characterization

- Characterizing the local rock/fluid/stress system is essential to the design and understanding of geophysical monitoring.
- Variations in the composition of the CO₂ injectant can have significant effects.
- Lab measurements on core samples is the most practical means of characterization.
- Supplemental in situ measurements are highly desirable (static and time lapse logging, pressure, and fluid saturation).

Monitoring Feasibility Studies

- INSAR: regional monitoring of injection-related surface deformation.
- Gravity monitoring: monitoring large injection volumes or shallow leakage monitoring.
- Require models to interpret what observed changes mean in terms of subsurface fluid distribution and stress changes.
- Best applied in conjunction with other higher resolution monitoring methods.
- LEERT currently falls into the category of a research method.

LEERT = Long-Electrode Electrical Resistivity Tomography

- Steel casings as electrodes, inject current and measure electric field.
- Numerical modeling study
- more resistive the overburden
- and/or the reservoir is significantly shallower
- Small inter-well distances are required;
- likely have fewer well casings

I E A G H G WEYBURN-MIDALE CO2 MONITORING AND STORAGE PROJECT

Downhole: Cross-well geophysical methods

- Crosswell methods can provide higher resolution images of the subsurface.
- Limited by required access to boreholes, the geometry of existing boreholes, and provide limited spatial coverage.
- In an EOR setting, borehole access requires interruption of production in active wells or access to abandoned wells.
- Usually wellbores do not extend through the reservoir limiting the imaging aperture for transmission tomography at the reservoir level.
- Crosswell techniques are best suited for monitoring above the reservoir. In a non CO₂ -EOR environment, there may be few wells, and monitoring wells will have to be provided.

Downhole: VSP

- Time-lapse VSP data are capable of producing somewhat higher resolution images of changes in the reservoir over a subset of the area covered by the surface time-lapse seismic data.
- Cover a small area of the reservoir compared to the area of surface shotpoints used to generate the VSP;
- Recording fidelity issues are common either due to sensor coupling in the wellbore or casing coupling to the wall of the wellbore;
- The data provide low fold coverage of the subsurface.
- These factors make AVO analysis of the VSP data unstable.

Downhole: Recommendations

IEA GHG Weyburn-Midale CO2 Monitoring and Storage Project

- Active-source downhole seismic methods (X-well and VSP) provide higher resolution imaging, but are limited by their deployment complications and their limited areal coverage.
- Best used for experimental purposes or support/calibration of surface time-lapse seismic.
- Permanent passive monitoring array has been very successful in providing assurance monitoring and constraints on deformation near the reservoir.
- Not suited for tracking CO₂ plume.

3D-3C Time-Lapse Seismic Data Acquisition

IEAGHG Weyburn-Midale CO2 Monitoring and Storage Project

Survey Dates
Date
1999
2001
2002
2004
2005 (May)
2005 (Nov)
2007
2008
2009

Area A Baseline Monitor I Monitor II Monitor III

Monitor IV Monitor V -Baseline

Area B

Monitor I Monitor IIa Monitor IIb Monitor III Monitor IV Monitor V

Blue: IEA Weyburn Phase I Data Black: EnCana surveys

Time-Lapse Seismic: Depth Slice at the Reservoir

IEAGHG Weyburn-Midale CO2 Monitoring and Storage Project

Marly Amplitude Differences

P vs. S_{CO2} (prestack inversion)

P vs. S_{CO2} (prestack inversion)

P vs. S_{CO2} discrimination

P vs. S_{CO2} discrimination

Assessment of Data Repeatability

Processing Acquisition b) a) CO₂ C 0.5 - 0.5 0.5 -0.25 0.25 -0.25 0.0 0.0 0.0 -0.25 -0.25 -0.25 -0.5 -0.5 -0.5 2000 4000 6000m 0

WEYBURN-MIDALE

3D time-lapse seismic monitoring without a baseline

IEA GHG Weyburn-Midale CO2 Monitoring and Storage Project

3D Seismic Methods: Recommendations

- IEAGHG Weyburn-Midale CO2 Monitoring and Storage Project
- Overall, provide the most effective means of monitoring the CO₂ distribution over a large area.
- Provide depth resolution capable of imaging/detecting CO₂ in the reservoir and overburden.
- Applicability will depend on local geology.
- Effective use in a qualitative sense is demonstrated, but semiquantitative use is still limited.
- Pressure vs. CO₂ saturation discrimination is feasible.
- Value of multi-component data acquisition is arguable.

Storage Security: Caprock Integrity -Seismic Anisotropy

Possible sources:

- Horizontal stress field
- Mineral fabrics
- Faults, fractures or micro cracks

HTI anisotropy (aligned vertical fracture set)

Horizon of Interest

Carleton

IEAGHG WEYBURN-MIDALE CO2 MONITORING AND STORAGE PROJECT

A. Duxbury

Caprock Integrity - Seismic Anisotropy

AVOA Results: Correlation With Other Studies

(2) ptrc

Resources

Bunge, 2000 Provide a core sample fracture analysis

Overburden Monitoring: CO₂ Inventory Estimates

Regional Seals

2004-2000 Interval travel time differences

Microseismicity

Stress Distribution: Vertical Injectors

Small moment magnitudes (-3 to -1) Low rate of seismicity: aseismical deformation Modelling to assess significance of observation Events likely due to stress transfer

Overburden: $\sigma_{V-EFF} \uparrow$, Vp \uparrow

Verdon et al. 2010

Summary

<u>Reservoir Monitoring</u>

- P vs. CO_2 discrimination: ΔP_{pore} up to 7-8 MPa, S_{CO_2} up to 60%.
- Predictive model verification: stochastic algorithm tested.

<u>Caprock Integrity</u>

- Isolated anisotropic regions.
- May be associated with vertical fracturing; however, seismic alone can't discriminate.

Overburden Monitoring

- No significant travel time changes observed above the regional seal;
 0-1% of injected CO₂ based on seismic.
- Small travel time (& amplitude) changes are observed just above the reservoir caprock (~1380 m) at the base of the storage complex. Likely associated with OOZ CO₂.
- OOZ CO₂ is likely the direct result of EOR injection operations rather than upward migration of CO₂ from the reservoir.
- Microseisms observed within the immediate overburden, are likely due to stress-arching effects in the overburden.

E A G H G Veyburn-Midale CO2 Monitoring Nd Storage Project

Seismic constrained simulation/history matching

I E A G H G Weyburn-Midale CO2 Monitoring

Recommendations: Seismic constrained simulation/history matching

E A G H G Weyburn-Midale CO2 Monitoring

- Primary means of integrating monitoring observations with geological model.
- Trial-and-error forward modelling provide time-tested methodology, but is labour intensive.
- Stochastic inversion (or other comparable methods) in principle provide an objective way forward, but are developmental.

Seismic Inversion Test (Single Injection Pattern)

True

I E A G H G WEYBURN-MIDALE CO2 MONITORING AND STORAGE PROJECT

Model True model Iter. = 20 Iter. = 30 Iter. = 10 Iter. = 50 Iter. = 60 Iter. = 70 Iter. = 40 millidarcies Inversion 10 17 32 56 100 Result

Improved site characterization & storage prediction through stochastic inversion of t-lapse geophys & **geochem data Research Provider:** Abe Ramirez et al. (LLNL) New data - Seismic: images CO₂ migration paths - Controlled by perm distribution - Defines spatial framework of phys/chem trapping mechanisms Fluid chemistry - Fluid chem: documents compositional evolution within this framework Likelihood - Controlled by CO₂-aq-min rxns - Define mass partitioning among phys/chem trapping mechanisms Seismic Prior data - CO₂/H₂O injection; HC/H₂O production

- Models embedded w/in MCMC algorithm
 - Extended reactive transport model
 - Lithologic transitional probability model
- Fundamental goal
 - Optimize agreement between observed
 & predicted storage perf per refined
 - Permeability distributions
 - Mineral volume fraction & kinetic data

- Inaugural attempt to integrate seismic & fluid chemistry data
- Fundamental elements of storage monitoring programs
- Thus, proposed methodology is new & broadly applicable

Overview: Inverting Geochemical Parameters

- Objectives
 - Quantify rates of key dissolution/precipitation reactions
 - Assess heterogeneities in distributions of reactive mineral phases/rates
- Challenges
 - Limited spatial resolution of brine compositional data
 - Extensive influence of injected water
 - Excessive computational burden
- Approach
 - Construct realistic synthetic problem to understand key constraints on water-rock reactions and effects of heterogeneity
 - Apply the inversion algorithm to a small-scale test problem (e.g., Pattern 16)
 - Apply the inversion algorithm across the larger scale

E A G H G Veyburn-Midale CO2 Monitoring Nd Storage Project

Dissolution / precipitation modeling of various Minerals

IEA GHG WEYBURN-MIDALE CO2 MONITORING

Geochemical indicator modeling

IEAGHG Weyburn-Midale CO2 Monitoring and Storage Project

Trends in geochemical indicators are reproduced by heterogeneous reactive mineral model: pH, Ca, Mg

Geochemical Monitoring: Overview

E A G H G Veyburn-Midale CO2 Monitoring Nd Storage Project

Storage Monitoring

Reservoir fluids (brines, gases) Reservoir fluids (hydrocarbons) Shallow groundwater Soil gas

Storage Prediction

Reactive transport modeling (AITF) Reactive transport modeling (SLB) Hydrocarbon EOS

Process/Property Studies

CO₂-brine-rock interactions Pore-scale matrix analysis Fracture transport

Reservoir fluid sampling (brines, gases)

Baseline (pre-injection)

August 2000

Monitor 2 (10 months)

July 200

Monitor 5 (21 months)

June 2002

Monitor 8 (32 months)

June 2003

IEA GHG Weyburn-Midale CO2 Monitoring and Storage Project

 Bernhard Mayer, Maurice Shevalier, et al. (Applied Geochemistry Group, Univ. Calgary)

Project scope

- ✓ Continue Phase-1 monitoring of CO₂-fluid-rock reactions & the intra-reservoir fate of injected CO₂ by periodic fluid sampling of 40-60 production wells within & nearby the Phase 1A/1B area
- ✓ During Phase 1, a baseline (Aug 2001) & 11 syninjection monitoring trips (3/year, M1-M11, Mar 2001 – Sep 2004) were completed
- ✓ During Final Phase, 5 monitoring trips (2/year, M12-M16: Oct 2008 – Oct 2010) address the same well suite sampled during M11 (Sep 2004); data continuity
- ✓ 40+ geochemical & isotopic parameters measured; comprehensive database: ~30k entries to date
- Unique, invaluable history-matching resource for reactive transport modeling programs

CO₂-brine-rock reactions: isotopic evolution

E A G H G Veyburn-Midale CO2 Monitoring Nd Storage Project

- CO₂ dissolution increases TDC, lowering produced $\delta^{13}C_{HCO3}$.
- dissolution of carbonate minerals increases HCO_3^- & produced $\delta^{13}C_{HCO3}$
- both reactions take place, but net result is lowering of $\delta^{13}C_{HCO3}$ -

 $CO_2 + H_2O = H_2CO_3 = H^+ + HCO_3^-$ One $\delta^{13}C - HCO_3^-$ ratio $H^+ + CaCO_3 = Ca^{2+} + HCO_3^-$ Second $\delta^{13}C - HCO_3^-$ ratio $CO_2 + H_2O + CaCO_3 = Ca^{2+} + 2HCO_3^-$ Mixed $\delta^{13}C - HCO_3^-$ ratio

Evolution of field-average pH, Alkalinity, \delta13C

δ13**C**

IEA GHG Weyburn-Midale CO2 Monitoring

Alkalinity

Evidence of solubility trapping: decrease in pH & δ¹³C-HCO₃⁻

• Evidence of calcite & dolomite dissolution: significant increase in Ca & Mg concentrations

pН

Reservoir fluids (hydrocarbons)

Research Provider

✓ Mars Luo et al. (SRC)

Project scope

- ✓ Continue Phase-1 effort:
 - Sample & analyze hydrocarbons from selected production wells (Phase 1A/1B)
 - Develop Weyburn-tuned HC EOS
 - Determine MMP
- Collect & mix separator oil & gas samples at GOR; measure PVT properties of reconstituted live oil & live oil-CO₂ system at reservoir conditions
- Fit PVT data with phase behavior modeling code to further tune 7-component PR-EOS formulation for incorporation into GEM & NUFT
- ✓ Redetermine MMP (rising bubble apparatus)
- Updated HC EOS & MMP required to refine reactive transport modeling work
- Analytical data required for continuity of valuable history-matching resource

E A G H G Weyburn-Midale CO2 Monitoring ND Storage Project

Shallow groundwater sampling

I E A G H G Weyburn-Midale CO2 Monitoring and Storage Project

- 24 private (active) wells could be sampled in 2009
- Number of active wells has declined significantly over time
- Reasons for decline:
 - owners moving off site
 - Weyburn Utility Board pipeline

Research Provider

✓ Harm Maathuis et al. (consultant)

Project scope

- ✓ Continue Phase-I sampling/analysis program
- Re-visit domestic wells sampled previously; determine current status; sample active wells
- Compare water quality results of 2009 with those of previous surveys
- ✓ Make recommendations for future surveys
- Long-term continuous "clean" record is critical from public acceptance standpoint
- ✓ Sampling trip July-Aug 2009

Conclusions / Recommendations

Since 2000, little change in water quality; changes in major ions concentrations (nitrate) have been observed in shallow wells located near barns.

The percent of exceedance (Saskatchewan standard/objectives) of constituents in the Weyburn area is consistent with those observed elsewhere in Saskatchewan.

Determining if shallow groundwater is being affected by EOR will be difficult at best.

Lowering of pH and increase in the bicarbonate concentration expected. However, pH might be buffered. δ^{13} C of bicarbonate might be indicative but not available.

Recommendations:

• For long-term monitoring of the groundwater quality conducting surveys every three (3) or five (5) years will be sufficient

• To establish baseline data, any future sampling events should include the determination of the $\delta^{13}C$ values

• Since the number of private wells likely will decline further and monitoring may be conducted over decades, consideration should be given to constructing a network of monitoring wells strategically located throughout the Phase I and II areas.

Soil gas monitoring

Research Provider

✓ David Jones et al. (BGS, SUR, BRGM)

Project scope

- ✓ Continue Phase-1 & interim Phase 1-2 effort (2001-2005) [background & Weyburn]
- ✓ Identify/extract background seasonal variations
- ✓ Source actual anomalies, if identified
- Long-term continuous "clean" record is critical from public acceptance standpoint
- ✓ Leverages CO₂ReMoVe funding, incorporates advanced techniques (e.g., continuous monitoring station), & potentially extends scope to include near-well locations
- ✓ Scheduled sampling trips Oct 2009 & Oct 2010

E A G H G Weyburn-Midale CO2 Monitoring

Reactive transport modeling: AITF, SLB, LLNL

IEA GHG Weyburn-Midale CO2 Monitoring and Storage Project

Accurate history matching requires

- ✓ Initial fluid-rock chemistry
- ✓ Injected water compositions
- ✓ Fractured reservoir model

Research providers:

- ✓ Stephen Talman, Ernie Perkins (AITF)
- ✓ James Johnson (SLB)
- ✓ Tom Wolery, Yue Hao, John Nitao (LLNL)

Project scope

- History match produced water compositions
 & observed isotopic evolution
- Predict reservoir/seal por/perm evolution & storage partitioning among distinct physical/chemical trapping mechanisms
- Augment NUFT to include a Weyburn-tuned Peng-Robinson EOS for hydrocarbons (Zhao et al., 2002; Freitag et al., 2004)

Expt'l/modeling study CO₂-brine-rock reactions

I E A G H G WEYBURN-MIDALE CO2 MONITORING AND STORAGE PROJECT

Research Provider

✓ Susan Carroll, Yelena Sholokhova, Megan Smith, and Yue Hao (LLNL)

Project scope

- ✓ Investigate the impact of injecting CO₂ on reservoir/caprock integrity using open (flowing) system experiments designed per lab-scale RTM (reactive transport modeling)
- ✓ Reservoir & cap-rock samples from Phase 1A/1B will be used; P-T will represent reservoir conditions
- ✓ This study will greatly improve our understanding of reservoir/cap-rock permeability evolution as a function of carbonate diss/pptn in the presence of CO₂
- It will also help calibrate & refine our reactive transport models

V6 pCO₂ = 3 MPa (1462.8 m)

IEAGHG WEYBURN-MIDALE CO2 MONITORING AND STORAGE PROJECT

Micron-scale reservoir matrix analysis

IEAGHG Weyburn-Midale CO2 Monitoring and Storage Project

Research Provider

✓ Tom Kotzer, Chris Hawkes, Ted Mahoney, Michael Bird, and Samuel Butler (Univ. Sask.)

Project scope

- Use micro-beam techniques (conventional & synchrotron) on pre- & post-CO₂ flood core from Weyburn to examine the micron-scale 3D pore-space network & distribution of pore-lining minerals
- Focus is on identifying incipient mineral & petrophysical alteration effects associated with CO₂ injection
- Core samples subjected to CO₂ at reservoir P-T in the laboratory (Carroll, et al.) will also be analyzed using this approach
- Micro-beam techniques potentially fill a critical gap in our current monitoring arsenal: the ability to detect CO₂-induced mineral diss/pptn effects at typical reservoir conditions over relatively short time frame; e.g., first few years of a CO₂ storage project
- Such detection of incipient mineral alteration effects will help calibrate & constrain reactive transport models.

Synchrotron CMT

Midale Vuggy (V2)

WEYBURN-MIDALE

CO2 MONITORING

2-D CMT Slice

Brine/CO₂ exposure, sample 1E-1

E A G H G Veyburn-Midale O 2 Monitoring Nd Storage Project

Before exposure

11111

Distinct dissolution features (wormholes)

Inlet

11111

Subtle, diffuse dissolution features; CMT imaging required to assess extent & character.

Outlet

Micro-scale numerical modeling of flow

 Refinements of pore space filtering and meshing has enabled flow modeling of larger sub-volumes (35μm × 35μm × 35μm)

E A G H G Veyburn-Midale CO2 Monitoring Nd Storage Project

The largest connected region in the sub-sample was isolated, as highlighted in red.

The subsample was first *surface* meshed in 3D.

Geometry was extracted for full 3D tetrahedral meshing.

The solution to the steady state Navier-Stokes equation. The color profile represents the pressure gradient (Red, pressure =1 : Blue, pressure = 0).

Fracture transport

E A G H G Veyburn-Midale CO2 Monitoring ND Storage Project

Research Provider

 Russ Detwiler, Jean Elkhoury, and Pasha Ameli (University of California -- Irvine)

Project scope:

- Experimental/modeling study to measure & predict the CO₂induced evolution of fracture permeability in Weyburn core
- Explicit integration of hydrological, geochemical, geomechanical processes
- Explore the scaling behavior of these processes using a computational model that couples geomechanical deformation & geochemical alteration of fracture perm during reactive flow
- Before & after the reactive flow experiments, characterize fracture surface roughness through measurement of asperity heights using a high-resolution profilometer & surface mineralogy using SEM
- CO₂-induced alteration of the fluid transport properties of natural fractures within Weyburn core has yet to be characterized

Experiment EV-1 – Experimental conditions

IEA GHG Weyburn-Midale CO2 Monitoring and Storage Project

Original core with open bedding-plane fracture

Sub-core prepared for flow-through experiment

Experimental conditions:

- Confining pressure = 28.6 MPa
- pCO₂=14.3 Mpa
- Constant flow rate = 0.003 mL/min
- Pressure control at inlet
- Duration 29 days

Optical surface profilometry Measured surface topography

Permeability alterations observed during experiment

Experiment EV-1: Aperture maps

IEA GHO WEYBURN-MIDALE CO2 MONITORING AND STORAGE PROJECT

35 mm

Small differences between before and after maps:

 likely a result of registration artifacts with 'after' measurements

or

 no measurable alteration of the fracture aperture distribution

So, what caused permeability fluctuations?

IEA GHG Weyburn-Midale CO₂ Monitoring and Storage

An International Collaborative Research Program Led by the PTRC Based in Regina, Saskatchewan, Canada

Government Sponsors

- Natural Resources Canada
- United States Dept. of Energy
- IEA GHG R&D Programme
- Sask Industry and Resources
- Alberta Energy Research Institute
- RITE (Research Institute of Innovative Technology for the Earth)

Industry Sponsors

Apache

ptrc

Petroleum Technology **Research Centre**

- Cenovus
- Chevron
- OMV Austria
- Aramco Services Co

- SaskPower.
- Schlumberger
- Shell

Project

- Alberta Innovates Technology Futures (AITF)
- Canadian Light Source Synchrotron
- ECOMatters (ECOM)
- Geological Survey of Canada (GSC)
- Permedia Group
- Saskatchewan Research Council (SRC)

Research Organizations

- T.L. Watson & Associates
- University of Regina (U of R)
- University of Sask. (U of S)
- University of Alberta (U of A)
- University of Calgary (U of C)
- URS Canada Inc.

- Fugro Seismic Imaging
- Lawrence Livermore National Laboratories

- University of Bristol UK
- International Energy
- Agency
- BRGM

Acknowledgements

Theme Leads:

- Neil Wildgust, PTRC
- Don White, GSC
- Ben Rostron, U of A
- Rick Chalaturnyk, U of A
- Chris Hawkes, U of S
- Craig Gardner, Chevron
- Jim Johnson, Schlumberger-Doll

Researchers:

- Mike Kendall, James Verdun, U Bristol
- Sandy Duxbury, Claire Samson, Carleton U
- Mark Meadows, Fugro Imaging
- Igor Morozov, U of S
- Abe Ramirez, LLNL
- Rick Ryerson, LLNL

- Susan Caroll, LLNL
- Yue Hao, LLNL
- Maurice Shevalier, U of C
- Stephen Talman, AITF
- Steve Whittaker, Global CCS Institute
- Andrew Cavanagh, Permedia Haliburton
- David Cooper, Cenovus
- Dave Jones, BSG
- Erik Nickel, PTRC
- Dave Risk, Nick Nickerson, StFX
- Yoon-Seok Choi, Ohio University
- Theresa Watson, T. L. Watson & Associates Inc.
- Doug Schmitt, U of A

E A G H G Veyburn-Midale

E A G H G Veyburn-Midale O 2 Monitoring Nd Storage Project

Thank you!

Barbara.Dietiker@NRCan.gc.ca

www.ptrc.ca http://ptrc.ca/weyburn_overview.php http://ptrc.ca/news.php

http://ccs101.ca/