

Geophysics, Geomechanics and Geochemistry of CO₂ Geological Store

Marcelo Ketzer

CEPAC – Centre of Excellence in Research and Innovation in Petroleum, Mineral Resources, and Carbon Storage (www.pucrs.br/cepac) marcelo.ketzer@pucrs.br

Agenda

- 1. Introduction.
- 2. Types of reservoirs for CO₂ storage.
- 3. The fate of stored CO₂: trapping mechanisms.
- 4. Applied geophysics: site selection and monitoring.
- 5. Applied geomechanics: site selection (and monitoring).
- 6. <u>Applied geochemistry</u>: site selection and monitoring.

5.1 Changes in the geochemical system,
5.2 Forms of investigations (experiments and modelling),
5.3 Rock integrity (mineral dissolution and precipitation):
A case study in Brazil.

7. Final remarks.

Creation of CEPAC / October 2007 (Joint initiative PUCRS-PETROBRAS)

Center of Excellence in Research and Innovation in Petroleum, Mineral Resources, and Carbon Storage.

AREAS OF RESEARCH AND DEVELOPMENT

CO₂ Geological Storage

Exploration and Production of Gas Hydrates in the continental margin

VIVA ESSE MUNDO

Geochemistry of giant pre-salt reservoirs (CCS)

Reservoir characterization (E&P)

Other projects (cooperation):

Palaeogeography and Palaeoclimatology applied to petroleum exploration Genomic Stratigraphy. Non-destructive imaging of sedimentological experiments. CO₂ capture with ionic liquids.

Infrastructure

Building with 1100 m² (3800 m² in 2013) in the Technological Park of PUCRS: TECNOPUC

Loboratories

- High-pressure CO2 lab
- Coal characterization lab
- Reservoir characterization lab
- Well bore integrity lab
- Numerical modelling lab
- X-ray difractometry lab
- Isotopic geochemistry lab
- Water analyses lab
- Gas analyses lab
- Gas hydrate lab

Human Resources

- 10 Professors at PUCRS
- 14 researchers
- 18 graduate students
- 14 undergraduate students

Porto Batista CCS Pilot Site (coal)

Porto Batista CCS Pilot Site (coal)

CONEGAS Project (gas hydrate exploration)

Types of geological reservoirs for CO₂ storage: petroleum fields, saline aquifers, and coal seam.

The fate of stored CO₂ storage: Trapping mechanisms.

Figure 1. Operating time frame of various CO₂ geological-storage mechanisms (modified from IPCC, 2005).

Dissolution / Mineralization

Adsorption

Fluid (water)

CO₂ (adsorbed)

Structural / Stratigraphic

Residual Saturation

- Mineral grains CO2 Formation fluids (brine/oil/gas)
- - Mineral grains 🛛 📕 Precipitated solid Formation fluids with dissolved CO2

Applied geophysics: Site selection and monitoring.

- Seismic (depth and type of trap, volume, type and migration of fluids).
- Others: Well logs, electromagnetic survey, gravimetric survey, etc.

4D seismic monitoring (Sleipner Project, Norway)

C02-3坑

http://noc.ac.uk/f/content/science-technology/marine-resources/carbon-capture-img3.png

CO2-2坑

Cross-well seismic tomography (Nagaoka Project, Japan)

www.rite.or.jp/English/lab/.../ccsws2007/6_xue.pdf

Monitoring at Frio Pilot

Applied geomechanics: Site selection (and monitoring).

- Hydraulic fracturing threshold for reservoir and caprock (site selection).
- Pressure threshold for fault activity (site selection).
- Use of tiltmeters, microseismographs, etc (monitoring).

http://www.geology.wisc.edu/courses/g112/Images/salv_faults.jpg

http://bellona.org/ccs/typo3temp/pics/b5712e213f.jpg

Applied geomechanics: Site selection (and monitoring).

http://www.netl.doe.gov/technologies/carbon_seq/corerd/images/simulation_1.jpg

http://geophysics.ou.edu/geol1114/notes/structure/confining%20pressure%20lab.jpg

Wet sand τ. Failure Dry sand + envelopes Set of new faults stage Pre-existing fault New fault Pre-existing fault σ, + σ, + σ σ, 20 σ comp-ression tension

Mohr-diagram showing failure envelopes for a pre-existing fracture, and for wet and dry sand.

Relatório de Ensaio

Máquina: Emic PC200	Célula: Trd 29	Extensômetro: -	Data: 17/12/2009	Hora: 16:47:07	Trabalho nº 0978
Programa: Tesc versão l	.13			Méto	do de Ensaio: ROCHA
Ident. Amostra: >>>>>>>	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>		>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	>>> SELO MB CLARO:

Corpo de	Área	Força	Tensão Máxima
11044	(cm2)	(kgf)	(MPa)
CP 1	38.5	20963	53.42
Número CPs	1	1	1
Média	38.48	20960	53.42
Mediana	38.48	20960	53.42
Desv.Padrão	÷	÷	÷
Coef.Var.(%)	÷	*	÷
Mínimo	38.48	20960	53.42
Máximo	38.48	20960	53.42

Windhoffer et al. (2005)

Uniaxial/Triaxial rock experiments \rightarrow

CEPAC/PUCRS

In Salah Project (Algeria)

Surface displacement observed by InSAR (Interferometric Synthetic Aperture Radar)

Morris et al. (2011)

Applied Geochemistry: changes in the geochemical system.

CO₂ as a supercritical fluid...

http://netsains.com/wp-content/uploads/2011/02/purba-co23.jpg

http://www.netl.doe.gov/technologies/carbon_seq/FAQs/images/capture_6.jpg

Fig. 1. Variation of CO₂ solubility in water: (a) with temperature and pressure; and (b) with salinity, for various conditions representative of sedimentary basins. Bachu & Adams (2003)

VIVA ESSE MUNDO

Acidification of the formation water...

Reactions of CO_2 in water: $CO_{2(g)} \leftrightarrow CO_{2(aq)}$ $CO_{2(aq)} + H_2O \leftrightarrow H_2CO_{3(aq)}$ $H_2CO_3 \leftrightarrow H^+_{(aq)} + HCO^{3-}_{(aq)}$ $HCO^{3-}_{(aq)} \leftrightarrow H^+_{(aq)} + CO_3^{-2}_{(aq)}$

Experiments to simulate CO₂-water-rock interactions

"Batch experiments"

"Flow experiments"

Atmospheric pressure

High pressure (autoclaves)

Experiments to simulate CO₂-water-cement (materials) interactions

PUCRS VIVA ESSE MUNDO

+

amostra

Rock sample (powder or cut/chunk)

Reactants (solution)

Experiment preparation (assembly, P+T set)

> System is locked from hours to months...

"Batch experiment workflow"

"Flow experiment"

Characterization before and after experiments:

WATER

pH, resistivity, alkalinity

Optical petrography

X-ray diffractometry

Major and trace elements (ICP-EOS)

Scanning Electron Microscopy

ROCK

Numerical modelling to simulate CO₂-water-rock interactions

"Batch" geochemical models

Kinetics, evolution of quantities of minerals and species in water

Equilibrium among phases, dissolution, precipitation, solubility of CO₂

Reactive transport models

Multiphase flow and reactive transport in porous/fractured media

PHREEQC v2 (USGS)

• Chemical species, equilibrium, 1D transport.

PUCRS VIVA ESSE MUNDO

The Geochemist's Workbench 7.0 (GWB) (Rockware, Inc.)

• Chemical species, equilibrium, kinetics of dissolution and precipitation, 2D single phase transport reactions.

TOUGH2 (LBNL)

• 3D Multiphase and multicomponente flow in porous/fractured media.

TOUGHREACT (LBNL)

• Inclusion of reactive models inTOUGH2.

Rock integrity (mineral dissolution and precipitation): A case study in Brazil for reservoir rock

Applied Geochemistry 24 (2009) 760-767

Water–rock–CO₂ interactions in saline aquifers aimed for carbon dioxide storage: Experimental and numerical modeling studies of the Rio Bonito Formation (Permian), southern Brazil

J.M. Ketzer, R. Iglesias *, S. Einloft, J. Dullius, R. Ligabue, V. de Lima

Brazilian Carbon Storage Research Center, Pontifical Catholic University, Av. Ipiranga 6681, Building 96J, Porto Alegre, Brazil

ARTICLE INFO

Article history: Received 19 September 2008 Accepted 5 January 2009 Available online 14 January 2009

Editorial handing by R. Fuge

ABSTRACT

Mineral trapping is one of the safest ways to store CO_2 underground as C will be immobilized in a solid phase. Carbon dioxide will be, therefore, sequestered for geological periods of time, helping to diminish greenhouse gas emissions and mitigate global warming. Although mineral trapping is considered a fairly long process, owing to the existence of kinetic barriers for mineral precipitation, it has been demonstrated both experimentally and by numerical modeling. Here the results of experimental and numerical modeling studies performed in sandstones of the saline aquifer of the Rio Bonito Formation, Paraná Basin, are presented. The Rio Bonito Formation consists of paralic sandstones deposited in the intracratonic Paraná Basin, southern Brazil, during the Permian (Artinskian–Kungurian). These rocks have the largest potential for CO_2 storage because of their appropriated reservoir quality, depth and proximity to the most important stationary CO_2 sources in Brazil. Here it is suggested that CO_2 can be permanently stored as carbonates as CO_2 reacts with rocks of the Rio Bonito Formation and forms $CaCO_3$ at temperatures and pressures similar to those encountered for CO_2 storage in geological formations. Results of this work will be useful for studies of partitioning mechanisms for C trapping in CO_2 storage programs.

© 2009 Elsevier Ltd. All rights reserved.

Numerical modeling and experiments to "test" sandstones of the Rio Bonito Formation (saline aquifer in the Paraná Basin)

Sandstone composition:

Sample composition (vol %)^a.

Sample 1		Sample 2		Sample 3	
Quartz	67.66	Quartz	66.66	Quartz	67.00
Kaolinite	6.66	Calcite	13.66	Kaolinite	6.66
Calcite	4.66	K-feldspars	5.00	Dolomite	5.33
K-feldspars	4.00	Pyrite	1.33	K-feldspars	4.66
Albite	1.33	Plagioclase	0.33	Albite	1.33
other	0.66	other	1.33	Pyrite	0.33
Porosity	15	Porosity	11.66	Porosity	14.66

^a Minerals determined by modal analysis of thin sections, counting 300 points per section.

Manometer

CO2 in/out

Teflon internal cup: rock +water

Batch experiments:

Termocouple

Electric heating

apparatus

Rock mass ca. 5 g Temperature 200 ° C Pressure 10-15 Mpa Time: 100 h

- (a) Dissolution of detrital grains (K-feldspar)
- (b) Precipitation of ordered kaolinite/disordered dickite
- (c) Precipitation of opal (botrioidal texture)
- (d) Precipitation of gypsite

Different forms of carbonates (calcite) precipitated in the reactor:

- (a) framboidal aggregates
- (b) blocky crystals
- (c) acicular
- (d) microcrystalline

Numerical models using PHREEQC v2

 HCO_3^{-1} HCO_3^{-1} HCO

Dissolved species

Example of dissolution/precipitation reaction

 $2KAlSi_{3}O_{8} + 2NaAlSi_{3}O_{8} + Ca^{2+} + CO_{2} + 4H_{2}O$ $\rightarrow 2CaCO_{3} + 2Al_{2}Si_{2}O_{5}(OH)_{4} + 2Na^{+} + 2K^{+} + 8SiO_{2}$ Calcite

VIVA ESSE MUNDO

Rock integrity (mineral dissolution and precipitation): A case study in Brazil for caprock

Available online at www.sciencedirect.com

Energy Procedia 00 (2010) 000-000

Energy Procedia

www.elsevier.com/locate/XXX

GHGT-10

CO₂ Geological Storage in Saline Aquifers: Paraná Basin Caprock and Reservoir Chemical Reactivity

LIMA, Viviane de ^{a,c}*; EINLOFT, Sandra^{a,b,c}; KETZER, João Marcelo^{a,c}; JULLIEN, Michel^d; BILDSTEIN, Olivier^d; PETRONIN, Jean-Claude^d

> PUCRS (PGETEMA^a, FAQUI^b, CEPAC^c)Porto Alegre, 90619-900, Brazil CEA Cadarache, DEN/DTN St Paul Lez Durance, 13108, France

> > Elsevier use only: Received date here; revised date here; accepted date here

Results of low pressure experiments

XRD spectrums: (a) *RB1* sample after 3 months, (b) *RB1* sample after 6 months, (c), PAL sample after 3

months, (d) PAL sample after 6 months

Example of dissolution/precipitation reaction:

Na-smectite + K^+ + Al ³⁺ \checkmark illite + Si ⁴⁺

Figure 2: TEM analyses of PAL sample: (a) and (b) illite crystals and/or interstratified I/S in initial sample; c) neoformed illite, (d) altered I/S and neoformed illite, (e) pure illite neoformed, (f) illite crystals (detail) and I/S after 6 months of reaction in CO₂ presence.

Results of high pressure experiments

Final remarks

Geophysics is very important for site selection of CCS projects and monitoring stored CO₂, particularly seismics.

Geomechanical properties are key for site selection, notably those related to fracturing of reservoirs and caprocks, and reactivation of existing faults.

Changes in geochemical properties related to massive injection of CO2 in reservoirs can be constrained by numerical modelling and experiments.

Minerals in the reservoir and caprock interact with stored CO_2 and formation water, changing trapping mechanisms with time.

Reactivity of minerals is an important factor to consider during site selection of CCS projects as they affect reservoir and caprock integrity .

DANGER EBOULEMENTS NE PAS DEPASSER CETTE LIMITE DANGER LANDSLIPS DO NOT GO BEYOND THIS POINT