

Hontomín project presentation

Ramon Carbonell

March 2012

CIUDEN: Spanish government foundation to promote, among other things, Carbon Capture and Storage

Hontomin is the Tech Demonstration Plant of the Compostilla OXYCFB300 EEPR project, run by ENDESA, in collaboration with CIUDEN and FOSTER-WHEELER

EEPR "European Energy Programme for Recovery" facilitates investments on infrastructure and technology projects in the energy sector; helps improve the security of supply of the Member States and, promotes implementation of the 20/20/20 objectives for 2020.

CSIC is the "Spanish Agency for Scientific Research", a network of research institutes.

The Players

The Responsible Team: M. Montoto¹, J. Carrera^{1,2}, A. Pérez-Estaún ^{1,3}, J.L. Fuentes-Quintanilla⁴, F. Recreo^{1,5}, J. Bruno^{1,6}

The Journalist: R. Carbonell^{1,3}.

1. Subprogram of CO2 Storage, Energy City Foundation

2. Institute of Environmental Assessment and Water Research, CSIC

3. Institute for Earth Sciences Jaume Amera, Spanish Agency for Scientific Research, CSIC

4. Association for Research and Industrial, Development of Natural Resources

5. Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

SCIENTIFIC AND STRATEGIC environmental consulting 6. Amphos 21, Consulting, Barcelona

In December 2009, the European Commission granted financial assistance to 6

CCS demonstration projects

Hatfield, United Kingdom

The aim of this project is to demonstrate the innovative integrated gasification combined cycle (IGCC) technology on a new 900MW power plant at a 91% CO_2 emission capture rate.

Rotterdam, The Netherlands

This project aims to demonstrate the full chain of CCS on a 250MW coal-fired power plant using post-combustion technology. The captured CO_2 will be stored in, an offshore depleted gas field.

Compostilla, Spain

This project will demonstrate the full CCS chain using oxyfuel technology firstly at a pilot scale on a 30MW coal-fired plant that will be scaled to a demonstration plant of 323MW. Captured CO_2 will be stored in a saline aquifer.

Belchatów, Poland

The aim is to demonstrate the full CCS chain on a new 250 MW unit that is part of an existing power plant. The capture technology is post-combustion. The captured CO_2 will be transported and stored in a saline aquifer.

Jänschwalde, Germany

This project aims to demonstrate both oxyfuel and post-combustion capture technologies. The storage will be carried our either in a depleted gas field or in a deep saline aquifer.

Porto Tolle, Italy

The objective of this project is to install CCS technology in a new 660MW coal power plant using post-combustion. The CO₂ will be stored in an offshore saline aquifer.

CCS concept

Compression

Transport

Injection-geological storage

CIUDEN overall objective

To create a world-wide reference centre for CCS technology development by means of research facilities for CO₂ Capture, Transport and Storage.

An initiative of the Spanish Administration

Compostilla OXYCFB300 project

Facilities goal: development of advanced "clean" combustion coal and evaluate environmental and economic feasibility for geological storage.

CO₂ Capture Technological Development Plant El Bierzo, Cubillos del Sil

CO₂ Storage Technological Development Plant Hontomín, Burgos

Our three-pronged strategy

Capture	 To validate close-to-market and emerging technologies for application at commercial scale 				
Transport	 To obtain technical criteria for design, management and safe operation of CO₂ pipelines through long- term runs 				
Storage	 To develop technologies and processes for injection and monitoring in saline aquifers to support industrial-scale activities 				

CO₂ Capture

CO₂ purification and compression

Fuels: anthracites, bit & subbit coals, pet coke, sustainable biomass

es.CO₂ - The first fire

CIUDEN LIGHTS THE FIRST FIRE IN THE CO2 CAPTURE CENTRE 2011-04-20 12:31:59

Ponferrada. "Saturday 16 April, at 7:30 pm, a stable and simultaneous ignition of the four burners on the pulverised coal (PC) boiler was carried out, thus reaching this important milestone in the commissioning of the Technology Development Centre for CO2 Capture,

Ciudad de la Energía" confirmed José Ángel Azuara

es.CO₂ CFB boiler.The first fire

CIUDEN LIGHTS THE FIRST COAL FIRE 2011-09-02

Comienza la puesta en marcha de la caldera de Lecho Fluido Circulante en el Centro de Captura de CO2

CARBÓN

El proceso de puesta en marcha de la caldera de Lecho Fluido Circulante (LFC), que comenzó a finales del mes de julio, sigue su curso según lo planificado. Recientemente ha completado el "primer fuego" con gas, para lo que ha sido necesario superar varios hitos relevantes e imprescindibles, como la prueba de señales del sistema de control y de los sistemas auxiliares de preparación de comburentes y de la propia caldera. Después de todos estos ensayos, se ha comprobado que la caldera opera adecuadamente y se

A finales del mes de agosto está previsto que se produzca el encendido con carbón en modo combustión convencional con aire, lo que constituye uno de los hitos más importantes y relevantes de todo el proceso de puesta en marcha. Ello va a permitir abordar de forma inmediata los ensayos comprometidos con la Unión Europea para validar la tecnología de captura de CO2 por oxicombustión en lecho fluido circulante de

Oxy-Fuel Combustion

Large Scale Pilot and Demo Projects

PROJECT	Location	MWth	Start up	art Boiler Type Main F		CO2 Train	
B & W	USA	30	2007	Pilot PC	Bit, Sub B., Lig.		
Jupiter	USA	20	2007	Industr. No FGR	NG, Coal		
Oxy-coal UK	UK	40	2008	Pilot PC			
Vattenfall	Germany	30	2008	Pilot PC	Lignite (Bit.)	With CCS	
Total, Lacq	France	30	2009	Industrial	Natgas	With CCS	
Pearl Plant	USA	66	2009	22 MWe PC	Bit	Side stream	
Callide	Australia	90	2010	30 MWe PC	Bit.	With CCS	
Ciuden - PC	Spain	20	2010	Pilot PC	Anthra.(Pet ck)	With CCS	
Ciuden - CFB	Spain	30	2010	Pilot CFB	Anthra.(Pet ck)	With CCS	
Jamestown	USA	150	2013	50 MWe CFB	Bit.	With CCS	
Endessa	Spain	~ 1500	2015	???	???	With CCS	
Vattenfall (Janschwalde)	Germany	~1000	2015	~250 Mwe PC	Lignite (Bit.)	With CCS	
Youngdong	Korea	~400	2016?	~100 MWe PC?	?	?	

After IEAGHG

CIUDEN Capture objectives

 Validation and scaling-up of oxyPC, oxyCFB, FGD and CPU

 Integration and optimization of the full process to produce CO2 ready for transport and storage

 Evaluate combustion from several types of coal (anthracite among them, first in the world) and biomass

S. Santos IEAGHG

http://www.nicholas.duke.edu/thegreengrok/co2pipeline

CO₂ Transport Experimental Facility CIUDEN

Block diagram of the CO₂ Transport Experimental Facility

simulation of CIUDEN's transport facility

CO2 Storage experiences

Туре	Project	Leader	Location	CO2 Source	Size	CO2 Sink	Start
<u>Deep saline aquifers,</u> porous contain very saline fossil water	Sleipner	StatoilHydro	Norway	Gas Processing	1 Mt/Yr	Saline	1996
	Entrada	SWP	CO/WY USA	Gas Processing	1.1 Mt/Yr	Saline	2008
	AEP Mountaineer	AEP	WV, USA	Powe Plant, Coal (Post- Combustion)	30 MW	Saline	2009
	Entrada	SWP	CO/WY USA	Gas Processing	1.1 Mt/Yr	Saline	2008
Depleted oil and gas reservoirs, porous reservoir containing a combination of water and hydrocarbons	К12-В	Gaz de France	Netherlands	Gas Processing	0.2 Mt/Yr	Depleted Gas Res	2004
	Snohvit	StatoilHydro	Norway	LNGProcessing	0.7 Mt/Yr	Depleted Gas Res	2008
	In Salah	BP	Algeria	Gas Processing	1.2 Mt/Yr	Depleted Gas Res	2004
	Otway	CO2CRC	Australia	Natural Deposit	0.1 Mt/Yr	Depleted Gas Res	2008
	Lacq	Total	France	Powe Plant, Oil Oxy	35 MW	Depleted Gas	2010
	Schwarze Pumpe	Vattenfall	Germany	Powe Plant, Coal Oxy	30 MW	Depleated Gas	2008
Enhanced oil recovery involves injecting CO2 into geological formations to achieve greater oil recovery.	SACROC		USA		~ 90 Mt	EOR	1972
	La Barge	ExxonMobil	WY, USA	Gas Processing	6 Mt/Yr	EOR	2008
	Weyburn	Pan Canadian	Canada	Coal Gasification	1 Mt/Yr	EOR	2000
	Brindisi	Enel &Eni	Italy	Powe Plant, Coal (Post- Combustion)	48 MW	EOR	2010
Deep coal seams are coal deposits that cannot be mined due to technological or economic constraints. CO2 is stored in these sites via a gas adsorption mechanism that leads to the release of methane, which can be used.	Burke County	DOE	USA		90 t (pilot project)		2009

CIUDEN Storage project Objectives

- Characterisation of a potential reservoir for the long-term storage of CO2 in a saline carbonated aquifer.
- Test & development techniques for **monitoring** the injection of CO2 and for its subsequent medium-term behaviour.
- **Modelling** the long-term behaviour of CO₂ in the resevoir, including the integrity, sealing and security of the storage
- **Optimize** characterization, monitoring and modelling techniques for **up scaling** and transfer to commercial storage.

CIUDEN Storage project Research lines

- Operate a research CO2 geological storage facility in a carbonated saline aquifer
- Improve knowledge of underground CO2 behavior, natural analogs
- Develop injection techniques for improving CO2 storage
- Develop low-cost techniques for CO2 monitoring
- Develop techniques for risk analysis and leakage early detection
- Public perception and acceptance

CO2 Storage cronogram

CO2 Storages TDP sequence

- 1. Selection
- 2. Characterisation
- 3. Conception
- 4. Construction
- 5. Injection
- 6. Closure
- 7. Responsibility transfert

1400

1600

Carniolas

Keuper

The target reservoir is a saline aquifer set in Early Jurassic (Lias) carbonates, around 150 m thick and 1500m deep.

The main seal is formed by more than 200 m of interlayered Early to Middle Jurassic marlstones and marly limestones.

Characterization tests to identify HMTC parameters During first 2013 semester

- Single interval tests
 - Pulse injection tests
 - Gas pressure threshold test
- Water pumping-injection ("quita y pon") tests
 - Coupled to tracer tests at injection well
- Tracer tests
- High pressure injection test: big push ("apretón")
- CO2 Push-pull ("mete-saca") tests

CO2 injection tests During 2013-2016

- Conventional ScCO2
- Fluctuating flow rate
- Liquid CO₂ injection
- Fluctuating with impurities
- Dissolved

Extensive modelling for

- 1) Test design
- 2) Interpretation
- 3) Long term prediction

Geological Storage of CO₂

"Life-cycle"

Pre-operational	Operational	Post- operational	Transfer to state
Site selection and characterisation	Injection and monitoring wells	Monitoring CO2	Transfer of responsibility to the State
Identification	Storing	Closing —	Transfer

- CIUDEN s public engagement strategy started at the very beginning of its field activities.
- CIUDEN maintains a permanent communication and engagement with the stakeholders.
- These activities will be reinforced with the Visitor s Centre that will be located next to the TDP.

Thanks for your attention