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ABSTRACT 
 
 The apparently simple act of selecting accelerograms for use in conducting 

nonlinear dynamic analysis has been the subject recent study (e.g., Baker 2005c) 
and conclusions are emerging. This paper attempts to elucidate those conclusions 
by starting from very ideal and simplified cases to deduce observations that are 
supported by more through numerical studies of nonlinear MDOF structural 
models. A direct and an indirect approach are discussed. To insure both lack of 
bias and adequate confidence limits in the estimation of response and response 
likelihoods, the selection of the spectral shape and number of the records is found 
to be dependent on the site, the structure and ground motion level. With proper 
choice of the spectral shape scaling of the records should not cause significant 
bias. 

  
  

Introduction 
 
 It might be said that both Luis Esteva’s career and my own have been highly focused on a 
single problem: estimating the annual frequency, λ, that an earthquake induces in a particular 
structure some specified behavior state.  We have worked separately, together and with many 
colleagues and students on pieces of and the whole of this issue.  There is a half century of 
literature on this subject with many approaches, simplifications, and results. Yet many of us are 
still working hard on the subject.  Modern computational resources have accelerated the 
progress, opening opportunities, for example, for large statistical samples of nonlinear dynamic 
analyses of multi-degree-of-freedom models of structures both for research and for applications. 
But the increased computational power is also being used by the structural modelers to improve 
the detail and accuracy of their FEM models. This verisimilitude is especially important as we 
attempt to push our studies to the extreme damage and collapse domains of behavior important to 
life safety assessment.  Therefore there will always be a demand to limit the number of dynamic 
analyses used to estimate λ. Even when, as in research contexts, computational limits may be 
less restrictive than in practice, there remain open many questions about which accelerograms to 
run in any particular situation. These questions arise both in practice and research. 
 
Current best record-selection practice even in research (e.g., ASCE 2005, Stewart 2002) has the 
seismologist providing of the order of 10 or fewer records that represent magnitudes and 
distances identified by probabilistic seismic hazard analysis (PSHA) disaggregation (e.g., 
Bazzurro 1999) to be the most likely to have caused the event that a particular response spectral 
ordinate equals the level associated with a particular mean annual rate of exceedance. These 
records are then scaled as necessary to match the level of the uniform hazard spectrum in one 
manner or another.  An important implication of this practice is that the result is dependent on 



the character of the seismicity that surrounds the site and the mean return period of interest.  It is 
implicit too that it believed that the magnitude and distance of a record do or may affect the 
structural response. It is also clear that nothing beyond single-degree-of-freedom (SDOF) linear 
structural behavior is used in the selection. While many questions surround various elements of 
this practice (e.g., the number of records, the impact of the scaling, etc.), especially for 
application to rare, severe response of nonlinear multi-degree-of-freedom (MDOF) structures, it 
has only recently begun to be investigated for accuracy and effectiveness. 
   
The objective of this paper is to back up briefly to look at the problem from a simple but perhaps 
fundamental perspective that may give us insights into what to look for and what to avoid in 
selecting accelerograms for nonlinear time history analysis. This may also suggest some of the 
compromises we are making in current practice and research. 
 
With these objectives I shall be making, for the purpose of clarity of exposition, various 
specializations and restrictions and simplifications, most of which could be expanded or 
generalized without significant effort. For example I take it as a given that the fundamental 
objective is the estimation of λ.  Note that special cases include, for example, the annual 
frequency (or, approximately, probability) of collapse, of roof drift angle greater than 3%, of 
maximum interstory drift in the first floor greater than its (random) capacity, etc. Such limit state 
frequencies are at the basis modern approaches to earthquake codes, guidelines, advanced 
practice, and performance-based earthquake engineering.  They are the first step toward 
estimation of more direct decision variables involving consequences such as lives lost, economic 
damage to structure or non-structural elements, and lost occupancy time.  Other limitations in the 
paper will be simple site hazard and structural representations. 
 
 

Direct Approaches 
 
 In the best of circumstances λ would be estimated by monitoring the response of the 
building itself for a sufficient number of years to estimate λ with the desired accuracy. Suppose 
for simplicity that single response variable, θ, is of concern (say the maximum interstory drift 
ratio - MIDR - in a frame).  Then, just as with empirical flood frequency analysis, we would 
need only order and plot these values versus i/n (where n is the number of years of observation) 
as an empirical complementary cumulative mean annual rate of exceedance function (CCDF), λ θ 
(x). The value of x at λ θ (x) = 0.001 would be the estimated 1000 year mean return period 
MIDR. Even, however, if the structure had been built and monitored, for safety level λθ’s of the 
order of 10-3 or less, this would require 10,000 or more years of data1. 
 
Somewhat more realistically the response will be estimated from linear/nonlinear dynamic 
analysis of a numerical model of the structure, be it an existing building or a proposed design. 
(We assume here that such numerical models are precise.) Then we would need “only” to have 
had an accelerometer in place at the site for these 10,000 years. All the records (above some 

                     
1 The basis for this statement is that simple binomial trials statistics suggests it requires a sample size of about 10/p 
to estimate small probability p with a standard error of about +/- 30% of p. To reduce this number to 15% would 
require 4 times as many years. 



practical threshold, say 1000 in total) would need to be run and their resulting values of θ plotted 
as above. While this case remains completely unrealistic it is an excellent hypothetical model to 
repeatedly return to as we consider how to address practical record selection.  This record set of 
some 1000 records would implicitly contain records generated by a multitude of magnitudes 
from different sources at various distances and azimuths over various travel paths, and this set 
would fully and properly represent all the characteristics of ground motion that might possibly 
affect the structure’s response. What is more, all these characteristics, including site effects, all 
appear in this large hypothetical set of in situ recordings in exactly the correct relative frequency 
of occurrence, both marginally and jointly.  Our objective in practical record selection is to 
reproduce this condition or, rather, to approximate it as best we can.  
 
Lacking this ideal set of records at our site we turn either to the catalogue of recordings or to 
simulation. Not wishing in this short note to take on the questioning of just how realistic various 
current modes of simulating accelerograms are, I limit myself to the catalogue2. I further 
presume that all these recordings are free from instrumentation limitations. Many good 
catalogues (or virtual catalogues) are readily available today with thousands of records (e.g., 
PEER 2005). Going to the catalogue of accelerograms recorded elsewhere to represent what has 
happened at my single site over years is an example of “trading space for time”.  It carries with it 
the need to try to understand what is important to the problem at hand to gain confidence that the 
trade has been fair and the conclusions accurate.  So we must ask which records in the catalogue 
with which characteristics are “right” for my site and in what proportion should select them. 
 
Suppose first, again for simplicity of exposition, that the threat at our site is a single fault 
segment, located R kilometers from the site3, which produces only “characteristic” events, i.e., 
full segment ruptures with very similar magnitudes4, M, and which does so in a Poisson way 
with known5 mean rate λo.  Then, hoping/assuming (again for simplicity, but close to current 
practice) that M and R are sufficient representations of the source and path and that, say, “firm 
soil” (or some like category among the current catalogue representations) is a sufficient 
characterization of our site, we might logically sort the catalog for all such records and run them 
through the numerical analysis to obtain values of θ.  Ordering and plotting them versus i/m 
(where m is the number of records found) would produce what we would hope to be a reasonable 
and accurate estimate of G θ (x), the complementary cumulative distribution function (CCDF) of 
θ given an event on the fault.  With this result it follows that λ θ(x) = λ’ P[θ>x| event]  = λ‘ G θ 
(x).  How much data does this require? Suppose, as in coastal California, λ’ is 1/ (several 
hundred years), then for λ θ(x) of the order of 10-3 to 10-4 we need G θ (x) to be of the order of  
0.1.  Reasonably confident estimation requires m to be about6 100.  Apart from the 
computational cost, there, of course, are not nearly enough such specific (M, R, firm soil) 
records in current or foreseeable catalogues (especially as one would like them to be from 100 
                     
2 For approaches using simulated records see, for example, Han 1997, Luco 2002 or Jalayer 2005. 
3 Measured in some relevant way, e.g., as closest distance to the rupture surface. 
4 A more fundamental approach might be to use rupture length rather than the more heavily processed  M to 
characterize events and select  records. 
5 Again we assume that this is known accurately. Indeed we shall assume throughout this and all such seismicity 
information to follow is perfectly known. 
6 Making “a distribution assumption”, i.e., fitting this data to a named probability law such as one with an 
exponential or power form, and estimating its parameter values can reduce this number by a factor of 2 to 3 at the 
risk of inducing errors in the upper tail by having made the wrong parametric modeling assumption. 



independent events).  Therefore we must relax the constraints and accept events within an 
interval7 M+/-∆M and R+/- ∆R.  Immediate questions are: how wide need these bins be to gather 
an adequate sample size? How much accuracy in θ is given up by using the “wrong” M and R, 
and how does that increase as say ∆M gets larger? And are there ways to modify the records to 
make them “more nearly right”?  The simplest, common illustration of this is, say, scaling up by 
some amount the accelerograms that are from “too small” M’s or “too large” R’s. And does such 
scaling induce biases of it own? Before addressing such questions, let us release at least one of 
the previous unrealistic limitations. 
 
We need to recognize that the assumption of a simple single {M, R} scenario is not only 
unrealistic but impacts our record selection discussion. Even with a single dominant neighboring 
fault there may be lesser magnitudes at various locations (and distances) that contribute to the 
likelihood of exceeding any θ level, x.  Further there are inevitably other seismic sources that 
also contribute to the hazard. These additional scenarios complicate record selection to the 
degree that they needed to be represented in the analysis.  For such cases we need write: 
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in which the individual mean rates of occurrence, λ, and conditional CCDF’s, G, are identified 
for each of the interesting (here discretized) set of {M,R} scenarios.  Records would have to be 
selected as above for each such scenario. Even if there are only 5 to 10 such scenarios the 
number of records and analyses needed may mount once again into the 1000 range. 
 

Intensity Measure-based Approaches: In Principle 
 
To address these challenges the seismic community has used for decades the notion of what 
some of us now call an “intensity measure” (IM); examples include PGA and first-mode-period 
spectral acceleration, Sa(T1), to serve as an intermediate variable in such assessments. The 
estimation of the mean rate of exceedance of the IM is the subject of PSHA and the 
responsibility of earth scientists not structural analysts.  The equation for λ IM(y) looks just like 
Eq. 1 with Gθ|M,R replaced by GIM|M,R.  The last function is obtained from standard strong ground 
motion attenuation “laws”. This PSHA problem is again outside the scope of this discussion; we 
assume that λ IM(y) is available for almost any IM we might chose. It is important to recognize 
that this a site-specific product reflecting all the {M,R} scenarios.  Therefore it has captured a 
major portion of the specific nature of our site. In particular it has released us from the need to 
have 10,000 years of recordings at the site in order to measure how frequently important 
magnitudes occur at critical distances from the site, and how certain measures (IM’S) of the 
amplitudes of their motions depend on magnitude and attenuate with distance. How completely 
and adequately this job has been completed for the objective of structure-specific λ θ(x) 
estimation remains to be discussed. 
 

                     
7 Let us drop further explicit discussion of soil conditions.  This is not to say that this is not a very important issue. 
Some portion of the variability in records from similar but different sites would presumably not be found from event 
to event at the same site. This question is related to the current discussion ergodicity (Anderson 1999) 



Returning to the estimation of λ θ(x), it is clear that IM’s can likely play a key role.  Let us see 
how.  The total probability theorem (e.g., Benjamin 1970) always permits an expansion of λ θ(x) 
into (e.g., Bazzurro 1998). 
 

|)(|)|()( | ydyxGx IMIM λλ θθ ∫=              (2)       
                     
in which the last factor is the absolute value of the derivative of λ IM(y), or, loosely, the mean 
rate of occurrence of a value of the IM equal to y. Having, as we do, λ IM(y), our problem is 
transformed into estimating Gθ|IM, the conditional probability that θ > x given IM = y.  Consider 
first our original ideal case where we have some 10,000 years of recordings directly from our 
site. For a given level of y, we would select a random sample from those records that have this 
(or approximately) this IM level, analyze the structure under them, and process as usual to 
estimate Gθ|IM versus x for this y level.   
 
How many records would this require?  Suppose we are interested again in about 10-3 to 10-4.  
Then we should look at levels of y such that λ IM(y) is in this range as well, since it is well 
known that λ IM(y) not Gθ|IM dominates the integral in Eq. 2. Indeed this is so true that generally8 
the estimation of Gθ|IM can be reduced to estimating well the mean of θ and only roughly its 
standard deviation and distribution shape.  Accepting this statement as at least a rough 
approximation we can estimate the required sample size to be of order9 only 10.  This enormous 
reduction in the necessary sample size is possible because the variability in θ given IM is small 
relative that in θ marginally.  This reduction is the consequence of the PSHA analysis of the IM 
“absorbing” most of the total variability in θ, leaving only the conditional variability of θ given 
IM to be estimated from the structural dynamic analyses. Under some practical circumstances 
only one such level (or “stripe”) may be adequate, in particular if there is interest in only a single 
level of x ( e.g., 3% drift) or of mean frequency (e.g., 2% in 50 years); in this case this an 
extremely attractive approach to the record selector and structural analyst.  Unlike the previous 
approach this number is independent of the number of sources contributing to the hazard. 
However more than one level of y may be necessary; 3 to 5 or more levels may be required if λ 
θ(x) is needed for a broad range of x values10 (Jalayer 2003), raising the required sample size to 
order 100.  In any case this IM-based approach is in principle very efficient11 and accurate, at 
least in the ideal case when the large site-specific sample is available. Even with this nominal 
perfect sample there remain interesting questions as to what variable is best to use as the IM. For 
MIDR prediction, PGA for example leads to larger required sample sizes than Sa(T1) simply 
because it is less well correlated with MIDR for moderate to long period structures. We shall not 
pursue this question of which IM to use here except (later) to the degree it impacts our focus: 
record selection. 

                     
8 Exceptions include case where the IM hazard curve is very steep and the dispersion of θ given IM is large in the 
region of interest. 
9 The basis for this is that the log of λ θ (x) is roughly proportional 2 to 3 times the mean of the log of x.  Therefore 
the +/-30% standard error in λ θ mentioned above requires about a 10% standard error in the mean of x.  This in turn 
requires a sample size equal to the square of the coefficient of variation (COV) of x divided by this 0.1.  The COV 
of say MIDR of an MDOF frame structure given a reasonable choice of IM (such as Sa(T1)) is less than  0.3 to  0.5 
plus for very severe degrees of nonlinearity.  
10 Especially near global collapse when the dependence on  y may be very nonlinear and the dispersion broad.  
11 It can be interpreted as an application of conditional Monte Carlo analysis. 



 
 

Intensity Measure-based Approaches: In Practice  
 

Now we must return to the real world and ask how records are to be selected in the IM-base 
approach when we must depend not on a ideal site-specific catalog but on the existing catalog of 
recordings.  This question is commonly asked and answered in practice but rarely in a very 
formal way. Given the discussion above it should not be a surprise that this is not a trivial formal 
question. There is no error in the application in the formulation of Eq. 2 and we have assumed 
that we have an accurate site-specific assessment of λ IM(y).  Therefore the problem reduces to 
how one should select records to estimate Gθ|IM.  The simple answer is we chose them so that we 
get the right answer.  This is more complex than simply what is an adequate sample size because 
there is now the question of suitability of records recorded elsewhere to this site. The contention 
is that this question can be addressed only if one considers carefully the structure of concern (and 
the IM at hand).  Let us consider two simple structures to get a sense of what is involved.   
 
Single DOF Linear Structure 
 

Suppose to begin that our structure is simply a linear oscillator, and that we have selected the IM 
to be the common one: Sa(T1) where T1 is the natural period of the structure.  Our objective is to 
select records from an available catalog to estimate Gθ|IM (x|y) accurately. In this case record 
selection for dynamic analysis purposes is clearly trivial. One can select any record (no matter, 
for example, what its M, R, or relative strength), scale it such that its IM = y, run the dynamic 
analysis and get, of course12, θ = y because in this case IM and θ are the same.  Further as all 
records will produce the same value, only a single record is necessary for perfect accuracy. In 
addition the same record can be used perfectly accurately for all levels, y, of the IM, only scaling 
is required. This absolute robustness with respect to record selection and scaling and this low 
dispersion (with its implied computational efficiency) are all a direct result of the selection of the 
IM, and the simple structure. Had the IM been another popular choice, PGA, none of these 
conclusions would hold. Because many structures are known to be “first-mode-dominant” it 
follows further that these desirable properties of Sa(T1) as an IM are likely to hold to some 
degree for many real structures, at least in the linear range.  Therefore, it can be anticipated that 
many concerns about record selection for such cases are unwarranted. Dynamic analysis of linear 
first-mode-dominated structures is seldom needed, however. Nonetheless it suggests that this IM 
is a natural starting point from which to look for improvements for more complex structures.  
Certainly those candidates for IM, such as PGA, that create record selection sensitivity for this 
simplest structural problem are not strong initial choices for the more realistic structural 
problems. 
 
Two DOF Linear Structure 
 
Suppose next that our structure is, say, a two-story frame that can be represented accurately by a 
                     
12 Provided, as I assume here for argument’s sake, our structure has 5% damping as is standard for the attenuation 
laws used in PSHA. If our structure has a different damping level there will be an offset dependent on average on  
the degree to which the two damping levels differ and there will be some comparatively mild dispersion from record 
to record. There is no evidence that this effect is dependent on M or R or other such record properties. 
 



2-DOF linear model. Further continue to assume that the IM is still Sa(T1), where T1 is the first-
mode period.  How now should the catalog be searched for records for dynamic analyses to be 
used? For the purposes of illustrating the principles, let us further assume that in fact the simple 
square-root-of-sums-of-squares (SRSS) approximation is exact13.  In this case given that IM = 
Sa(T1) = y, the response of interest can be written: 
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in which c1 and c2 are coefficients depending on the dynamic properties of the structure. This 
form makes it clear that (given Sa(T1)) θ is simply a function of the random variable Sa(T2), 
where the probability distribution of  Sa(T2) is the conditional distribution of Sa(T2) given Sa(T1). 
 We shall take advantage of this below. One can also re-write Eq. 3 as 
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In this form it is clear, first, that our concern is only with cases in which the second mode makes 
a comparatively strong contribution to θ, as indicated by the ratio under the radical, and, second, 
that θ is simply a function of the (random) spectral ratio R2/1 = Sa(T2)/ Sa(T1) - still 
conditioned, of course, on Sa(T1) = y.  The former observation implies that the record selection is 
trivial and robust in the first-mode dominated case, as discussed above. The latter observation 
emphasizes that once the IM level is given it is the only relative value, Sa(T2)/y, (or spectral 
shape) that matters.  This notion carries over to other structures as well. Knowledge of this fact 
supports the practice of selecting records from {M, R} bins that dominate the site hazard, 
because M is known to have some effect (in the mean at least) on spectral shape.  The fact is 
even more evident in the common practice of first selecting records whose spectral shapes 
closely match that of the UHS or of the median spectrum given the dominant M and R, and then 
scaling them to match the level of the target spectrum. Neither of these practices, however, 
reflects the conditional nature of this dependence. We address this issue this next. 
 
To estimate well Gθ|IM(x|y) when the second mode is important  we clearly need to select records 
from the catalog that capture accurately the conditional distribution of Sa(T2) given Sa(T1) = y (or 
equivalently of R2/1 given Sa(T1) = y).  This distribution is not readily available today14.  But we 
can get guidance as follows. 
 
 In order to understand better how in principle record selection should proceed in this case, we 
shall once again simplify by assuming, for the moment, that a single M = m and R = r scenario 
dominates our site’s hazard. Conventional attenuation laws are based on the fact any Sa(T) value 
has a lognormal distribution with the mean of the natural log, call it µlnS, equal to specified 
function of m and r and with standard deviation of the log, σlnS, equal to another such function. It 
is reasonable to assume further that the spectral accelerations at two different periods are jointly 
                     
13 Again one might ask: then why is dynamic analysis necessary?  It is not, of course, but I again appeal to the sake 
of the argument. 
14 It happens that they can be found from disaggregation of vector-valued PSHA (Bazzurro 2002), public  tools for 
which are under development (Somerville 2005). 



lognormal with correlation coefficient15 of the logs ρ. In this case the conditional mean of log 
Sa(T2) given Sa(T1) = y is: 
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The median, η, of Sa(T2) given Sa(T1) = y is e raised to this power or: 
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expected value (given M =m and R=r).  The conditional median spectral ratio or shape is Eq. 6 
divided by y or  
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Note that this conditional shape is the marginal median shape times an exponential that is 
negative and proportional to ε and (1-ρ) under the reasonable assumption that the two σ’s are 
about equal. For the larger values of y of most engineering interest ε is positive and the 
conditional median shape at other periods is below the one we expected “on average”. The 
degree to which it is below depends on how far the selected level y of Sa(T1) is above its median 
and how weakly correlated the two spectral ordinates are.  This correlation decays with 
separation between the two periods16.  The implication is that the conditional median spectral 
shapes of interest are somewhat peaked around T1 relative to the median shape.  This in turn 
means that if the response of the first mode is higher than expected the response of the second 
mode will be relatively less than one would expect otherwise. These conclusions have been 
verified empirically (Baker 2005c).  Fig. 1 shows plots of predicted spectra, including one 
median spectrum and two that are conditional on Sa(0.8s) being at the 1.5 ε level. It also shows 
these three spectra scaled to a common value of Sa(0.8s). Note that the two positive ε spectra are 
more peaked than the median spectrum and have very similar shapes despite the half-unit 
magnitude difference in their causative earthquake. 
 
If the structure has an important second-mode contribution to θ, a first-order requirement 
towards estimating well Gθ|IM(x|y) would be to select records that have approximately this 
median shape value.  Note that for higher values of y that this shape is not the median shape.  
Therefore the practices of using the UHS shape or the median shape of the dominant M and R 
scenario17 are not as accurate as they might be for the rare events of common engineering 
                     
15 A recent study of this correlation coefficient is to be found in (Baker 2005b). It depends primarily on the ratio 
T1/T2 and is effectively independent of magnitude and distance. 
16 For separation of modal periods by a factor of 3 the value of ρ might be about 0.6 and σln Sa about 0.7 implying for 
ε equal 1 the shape is about 25% lower and for ε equal 2 the shape is 40% lower.  The effect on θ will depend on the 
importance of the second mode to the response quantity in question. 
17 For our special case here that the seismic threat is limited to single {M,R} scenario, the UHS shape and the 
median shape (given these M and R values) are virtually identical (differing only to the degree that the log standard 
deviations are different at different periods). 



interest.  
 
A direct way to select the records in this simple linear 2-DOF case is to calculate the spectral 
ratio at T1 and T2 for all the records and select records such that their median is about that given 
in Eq. 7. Then they may be scaled such that Sa(T1) equals level y and the dynamic analyses run 
to find Gθ|IM(x|y).  Note in particular that for this linear 2-DOF case the records selected will 
need to change as y changes, that the M and R of the records are immaterial per se (only their 
spectral ratio matters), and that the selected records may be scaled to any degree without loss of 
accuracy.   
Even in the linear 2-DOF case we have made simplifications. In the record selection we have 
tried only to match the conditional central value not the variability of the spectral ratio. This is 
also quite feasible but will not be pursued further here. Further if we do not have a single {M,R} 
pair the determination of this conditional median shape is not trivial. In principle there must be a 
weighting over all {mi,ri} pairs18.  It may be sufficiently accurate in some cases to use 
disaggregation to determine a single dominant {M,R}and then apply the reasoning above as if it 
were the only threat. This would already be a step beyond current practice. 
 
A second more indirect way to select the records for this case is to chose records (from the 
general magnitude range; R is less critical as it has little mean effect on strong motion spectral 
shape) that have the required level of ε (consistent with the level y), and then scale them to the 
correct level of Sa(T1). This too should on average at least capture the more peaked spectral 
shape associated with the higher levels of y and ε of primary interest.   
 
More General Structures 
 
While the conclusions from the simple 1 and 2-DOF linear structure are in principle limited to 
these simple cases, they suggest several generalizations that can be made, which have been 
verified in recent studies with nonlinear SDOF and MDOF frame models (e.g., Iervolino 2005, 
Baker 2005c, Tothong 2005).  The objectives in record selection and scaling for accurate 
estimation of Gθ|IM(x|y) are to capture primarily the proper general amplitude (via the IM level) 
and secondarily the spectral shape given that IM level. For the common IM Sa(T1) once the first 
objective is met the estimation of Gθ|IM(x|y) is fairly robust with respect to the records selected as 
long as the structure is first-mode dominated and only moderately nonlinear.  
 
For other structures it can be important to select the records to capture the appropriate spectral 
shape. This was demonstrated for higher modes (T2/T1 < 1), but it is clear from our 
understanding of nonlinear dynamic behavior that it is equally important to reflect properly the 
longer periods when the structure experiences substantial “softening”. While there are no direct 
ways (similar to that used above for the 2-DOF case) to identify one or a few unique longer 
periods to focus upon and analyze, it should be clear that an objective of matching the 
conditional median spectral ratio would apply to each period of interest.  Hence it follows that 
the entire conditional median spectral shape is logical first-order target for record selection for 
all structures.  It should be re-emphasized that this shape is not the same as the median or UHS 
shape unless the level of y is near the median value of the IM Sa(T1), and that this shape will 
change as y changes, being most different from the median shape for large, rare values of the IM, 
                     
18 As mentioned in footnote 14 such information will become available in time. 



which is when strong degrees of nonlinearity may occur. It is the author’s belief, while not 
proven here, that for more general structures (as was shown here for the 1 and 2-DOF linear 
structures) it is not critical to capture the “causative” magnitude19 if the spectral shape itself has 
been selected well. Magnitude is primarily just a proxy for the median shape. 
 
We saw above that arbitrary levels of scaling of the records was not a cause of response bias in 
the 1 and 2-DOF linear structures, provided (in the 2-DOF case) that the spectral shape was 
correct. It is the author’s experience that, with this same proviso, this conclusion is more 
generally true (e.g., Shome 1998, Baker 2005c).  
 
It should be noted that the schemes discussed above are based on the common use of linear first-
mode period spectral acceleration as the IM. It has been found that other choices of the IM may 
provide even more robustness with respect to record selection (Luco 2002, Luco 2005, and 
Tothong 2005), just as Sa(T1) provides more such robustness than PGA.  These new IM’s are 
based on inelastic spectral acceleration. Another major objective of seeking improved IM’s is the 
reduction of the number of records and analyses needed to achieve a specified level of 
confidence in the estimate (recall it was set here as a standard error of estimation of λθ(x) of 
about +/- 30%, or of the conditional mean of θ of about +/- 10% ).  This is achieved by finding 
“better response predictors”, i.e., IM’s that reduce the variance of θ given IM = y for various 
levels of y (i.e., degrees of structural nonlinearity).  This so-called IM efficiency (Luco 2005) 
issue has not been addressed here. 
 
Further this study of the record selection problem presumes that the model of the structure is 
available at least to the level of knowing the general range of its first-mode period.  (Because of 
the high correlation between two comparatively nearby periods there is little loss of accuracy or 
efficiency if the period T of the Sa(T) used as the IM is some distance from that of the final first- 
natural period of the structural model.  (Of course whether that model estimates well the first-
natural period of the real structure is another problem, which does not influence how we should 
best analyze the model we have.)  While the general principles above hold for all cases the 
judgments stated as to accuracy and effectiveness depend on the author’s experience with 
building-like structures, which at least in the linear range tend to have no more than two or three 
most-important elastic modes.  Other cases, including those in which the record selection is done 
(for good or bad reasons) without knowledge of the structure or those where there are many very 
important response measures sensitive individually to different portions of the input spectrum, 
have not as yet been studied in this way.  Short of using different IM’s, records, and analyses for 
the different subsets of these cases (a strategy which is permitted in the nuclear arena, e.g, NRC 
1997), it is clear that some compromise well have to be made with respect both to efficiency 
(implying larger sample sizes or larger standard errors) and perhaps to the accuracy (or record 
selection robustness).  
 
 
 

                     
19 Exceptions may be when the response is duration sensitive and magnitude serves as a proxy for duration. The 
peak displacements of nonlinear framed structures do not seem to be duration sensitive even when strength 
degradation is involved. 



Conclusions 
 

We conclude that the selection of records for use in nonlinear seismic time history analysis of 
MDOF models of structures can benefit from starting from a defined structural objective, here 
estimation of the mean annual frequency of some structural response measure, θ, exceeding level 
x, i.e., λθ(x), and then asking how that might be directly and/or indirectly estimated in various 
ideal and simplified cases.  Discussion of the ideal case in which 10,000+ years of recordings 
have been made at the site reveals that numerous (order 1000) records and time history analyses 
will be required (save, perhaps, special techniques to reduce this number). Recognizing that the 
recorded accelerograms must come from catalogs of data recorded at many sites and caused by 
many sources, it becomes clear that record selection must allow in some way for the failure of 
such data to reflect the relative frequency with which various events at various distances will 
affect the site. In short in this form the record selection problem is very site-seismicity 
dependent. This complicates the selection problem and increases the number of analyses 
necessary for accurate estimation of λθ(x).  
 
Turning to an intensity-measure-based formulation of the analysis and estimation problem, one 
finds that the PSHA analysis leading to the IM hazard curve, λIM(y), captures much of the site-
specific seismicity issue and of the variability in θ.  Now one needs to select records to estimate 
Gθ|IM(x|y), the CCDF of the θ conditional on IM = y. Even though this CCDF may have to be 
evaluated at several levels of y, this approach leads to significantly reduced record selection and 
sample size needs.  But again the ideal problem is compromised by the need to select records 
from the available record set rather than a site-specific catalogue. Two, simplest structural 
dynamic models, namely linear 1- and 2-DOF systems, are discussed with the objective of 
understanding the benefits and challenges of the record selection and scaling problem for “real” 
(nonlinear MDOF) structural models. The conclusions are that, while the sample sizes may be 
smaller with the IM-based procedure, to the degree that the structure is not first-mode dominated 
or not nearly linear, care may be needed in selection of the records (and particularly with respect 
to their spectral shape), to insure that a bias is not introduced in the estimation of Gθ|IM(x|y) and 
hence in λθ(x). In particular it appears that the spectral shape needs to reflect properly the level 
of ε, which is a measure of the Sa(T1) IM level relative to its expected value (given the M and R 
scenarios of primary interest at the site). This shape is, for the positive ε’s of engineering 
interest, more peaked than the UHS or median spectral shape (given a dominant scenario {M,R} 
pair). Provided this shape is captured it appears that the M and R selection criteria may be 
significantly relaxed and that scaling records to match the level y of the IM will not induce 
significant bias.  These conclusions are supported by current research on nonlinear MDOF 
frames (e.g., Baker 2005a, Baker 2005c, Iervolino 2005). 
 
It is noted that, while the focus here has been on estimating λθ(x), the conclusions here apply to 
“more deterministic” current-code-practice objectives, such as estimating the mean of θ “given 
the 2% in 50 ground motion”. Since this concept in quotes exists only for a scalar ground motion 
measure (and not, for example, for an entire spectrum), it can be taken here to mean the 2% in 50 
Sa(T1) IM level.  Setting y equal to that level y* for which λIM(y*) = 0.0004, this problem can be 
stated as estimating the mean of the distribution Gθ|IM(x|y), i. e., the conditional mean of θ given 
Sa(T1) = y*. It will be recalled that concerns about the required sample sizes and about biasing 
that distribution were cast above in terms of that mean. More modern codes are based on a target 
value of λθ(x) (rather than λIM(y)). Therefore the discussion above applies directly to them.  
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Figure 1.    (Upper) expected response spectra for three scenario events; (lower) expected 
response spectra for three scenario events, scaled to have the same S

a
(0.8s) value. 

Source: Baker 2005a. 
 
 


