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I first came to know of Luis Esteva in 1974, while a doctoral student at the University of Illinois 
at Urbana-Champaign. My interest in probabilistic methods had led me to the seminal paper by 
Rosenblueth and Esteva in 1972, which was the first to propose a code format based on the 
lognormal distribution – a format that is now omnipresent in many established or proposed 
probabilistic design procedures. At the time, Luis Esteva was a towering figure in my 
imagination, distant and unapproachable. It was not until 1980 that I met him personally at the 7th 
World Conference in Earthquake Engineering in Istanbul, Turkey. The meeting was an eye 
opener:  not only Professor Esteva was not a “towering” figure, he was undeniably friendly, 
approachable and kind. I do not remember when it was that I dared to drop the “Professor” title 
when addressing him, but his gentle and friendly attitude had a lot to do with it. Over the years I 
have enjoyed the pleasure of his company on many occasions, and have learned a lot from his 
papers and comments. The magnitude of his research accomplishments and service to the 
profession, the depth of his knowledge in probabilistic methods and earthquake engineering, and 
the breadth of his general knowledge are truly amazing. But what is even more significant is his 
humility, his ability to encourage young researchers, and, above all, his gentleness. In my 
imagination now, Luis Esteva is the quintessential Mexican gentleman and scholar.     
 

 
Armen Der Kiureghian 
August 10, 2005 
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ABSTRACT 
 
 A framework formula for performance-based earthquake engineering has been 

proposed by the Pacific Earthquake Engineering Research Center (PEER). This 
paper addresses two aspects of that formula. One deals with the probabilistic 
information that one can obtain from the result of this formula, which is expressed 
in terms of the mean annual frequency of an earthquake effect exceeding a 
specified threshold. The other critically examines the predominant method for 
computing the probability distribution of a demand parameter for a given intensity 
of ground motion and suggests an alternative. 

  
  

Introduction 
 
 Earthquake engineering, perhaps more than any other field of engineering, must confront 
and deal with uncertainties. The randomness in the occurrence of earthquakes in time and space, 
the vast uncertainty in predicting the intensities and other characteristics of the resulting ground 
motions, and large imperfections in the predictive models used to assess structural demands and 
capacities under cyclic loads, all compel us to make use of probabilistic methods in order to 
consistently account for the underlying uncertainties and make quantitative assessments of safety 
and reliability. Such analysis is also required for informed decision making for design, retrofit or 
maintenance of structures. 
 
 Luis Esteva has prominently contributed to the development and use of probabilistic 
methods to advance earthquake engineering. Indeed, he has contributed to many aspects of the 
field, including the development of probabilistic code formats (Rosenblueth and Esteva 1972), 
modeling and estimation of seismicity (Hasofer and Esteva 1985), seismic reliability assessment 
of structures (Esteva and Ruiz 1989, Esteva et al. 2001), development of optimal solutions for 
seismic instrumentation (Heredia-Zavoni and Esteva 1998, Heredia-Zavoni et al. 1999), 
performance-based seismic design criteria (Esteva et al. 2002) and maintenance (Montes-
Iturrizaga et al. 2003), and selection of ground motion intensity measures for performance-based 
earthquake engineering (Giovenale et al. 2004). He has developed methods motivated by real-
world needs, which are scientifically sound, yet simple and practical. His work has influenced the 
practice of earthquake engineering not only in Mexico, but also throughout the world. This is 
evidenced by the numerous citations to his papers, which one finds by searching the international 
earthquake engineering literature. One hopes and anticipates that his contribution and influence 
will continue for many years to come. 
 
 After many years of early development, the earthquake engineering community is finally 



moving towards incorporating probabilistic methods in a systematic way in the design and 
decision-making for earthquake effects on structures and other constructed facilities. One 
important manifestation of this is the effort in the Pacific Earthquake Engineering Research 
Center (PEER) for developing a performance-based earthquake engineering (PBEE) 
methodology. According to Moehle and Deierlein (2004), “performance-based earthquake 
engineering seeks to improve seismic risk decision-making through assessment and design 
methods that have a strong scientific basis and that express options in terms that enable 
stakeholders to make informed decisions. A key feature is the definition of performance metrics 
that are relevant to decision making for seismic risk mitigation.” Implicit in this definition is the 
understanding that all relevant uncertainties in the design or decision-making are properly and 
consistently accounted for in computing the performance metrics.  
 
 As a contribution to this symposium honoring Luis Esteva, I have decided to discuss 
some probabilistic concepts related to the PEER PBEE methodology. Judging from Esteva’s 
recent work, I believe this topic is of interest to him. After a brief introduction of the framework 
formula on which the methodology is based, I discuss the various types of probabilistic 
information that one can obtain from the mean annual frequency of occurrence, which is the main 
output of the formula. I then offer a critical discussion of the predominant method for computing 
the distribution of structural demand measures for a given intensity, which uses recorded ground 
motions. Potential shortcomings of the method are described and an alternative approach is 
suggested. It is hoped that these discussions enhance and refine the usefulness of the PEER 
PBEE methodology and framework formula.   
 

The PEER PBEE Methodology 
 
 The PEER PBEE methodology is based on a framework formula that estimates the mean 
annual frequency of events where a specified variable exceeds a given threshold. Originally 
proposed by Cornell and Krawinkler (2000)1, the formula has the form 
 

 ( ) )(λd)(d)(d)(λ imimedpGedpdmGdmdvGdv
dm edp im
∫ ∫ ∫=                                             (1) 

          
in which im denotes an intensity measure (e.g., the peak ground acceleration or the spectral 
acceleration at a selected frequency), edp denotes an engineering demand parameter (e.g., an 
interstory drift), dm denotes a damage measure (e.g., the accumulated plastic rotation at a joint), 
dv denotes a decision variable (e.g., dollar loss, duration of downtime), )|Pr()|( yYXxyxG =<=  
denotes the conditional complementary cumulative distribution function of random variable X  
given yY = , )|( yxdG  is the differential of )|( yxG  with respect to x , and )( xλ  denotes the 
mean frequency of }{ Xx <  events per year. Absolute values are used on the three differential 
quantities since they are negative. The resulting quantity, )(λ dv , denoting the annual frequency 
of events where the decision variable DV exceeds the threshold dv, is the principal decision 
metric advocated by PEER for seismic risk mitigation. Similar formulas can be written for the 

                     
1 The original version by Cornell and Krawinkler did not include the intermediate variable EDP.  This variable and 
the corresponding integral were added in later publications of PEER. 



annual frequencies )(λ dm  and )(λ edp  involving 2 and 1-dimensional integrals, respectively. 
 
 An important advantage of the framework formula (1) is that it decomposes the task of 
assessing the decision metric into the subtasks of seismic hazard analysis, )(imλ , structural 
response analysis, ,)( imedpG  damage analysis, ,)( edpdmG  and loss analysis )( dmdvG , each 
of which may be handled by a different group of experts (Porter 2003, Moehle and Deierlein 
2004). This decomposition is made possible through the fundamental assumption that, 
conditioned on EDP, DM is independent of IM, and, conditioned on DM, DV is independent of 
EDP and IM. Another fundamental assumption is that the structure is restored to its initial 
condition after each damaging earthquake event. 
 
 A number of investigators have suggested the use of formulas similar to (1) to compute 
the probability distribution of extreme EDP, DM or DV values for all earthquakes occurring 
during a specified period of time, typically one year or the lifetime of the structure. It has been 
shown in Der Kiureghian (2005) that, if there are non-ergodic uncertainties (i.e., uncertainties 
which do not renew at each earthquake occurrence, such as epistemic model uncertainties), then 
such use of the formula entails an error, which can be significant if the probability of interest is 
greater than around 0.01.  Therefore, caution must be exercised in the use of (1) for computing 
probabilities. More on this is described below.  
 
 In the following two sections, two aspects of the PEER framework formula are discussed. 
The first deals with the types of information that one can gain from the mean annual frequency 

)(λ x , where x  may denote a DV, DM or EDP threshold. The second deals with the methods 
available for computing the conditional distribution of an EDP for a given IM, i.e., the 
complementary CDF )|( imedpG . 
 

What Can We Learn from )(λ x ? 
 
 As mentioned earlier, )(λ x  denotes the mean annual frequency of occurrences of an 
earthquake effect X (e.g., a DV, DM or EDP) exceeding the threshold x . Assuming X  is non-
negative, a plot of )(λ x  versus x  may appear as in Figure 1. Three distinct characteristics of this 
curve are noted:   
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1.  Typical plot of the annual frequency of occurrence of events {x < X}. 
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1. For X  denoting a DV, DM or EDP quantity, )(λ x  is a non-increasing function of x . 
  
2. As x  approaches zero, )(λ x  approaches a finite value )0(λ . When X  denotes an EDP 

quantity, )0(λ  is the mean annual frequency of all earthquakes considered in the hazard 
analysis of the site. We denote this value as 0λ . When X  denotes a DV or DM quantity, 

)0(λ  is the annual frequency of earthquakes that cause finite damage and loss. Note that 
in this case )0(λ  can be smaller than 0λ , since some low-intensity earthquakes may not 
cause any damage or loss. In practice, one often computes )(λ x  for a few selected 
thresholds and uses extrapolation to construct the curve for small thresholds. For 
example, the tangent approximation shown in Figure 1 as a dashed line (usually in a 
semi-logarithmic plot) is often used. Obviously, the above interpretations of )0(λ  can be 
helpful in constructing a better approximation of )(λ x  for small thresholds. 

 
3. The far tail of the curve normally drops off to zero for high thresholds, though for DV and 

DM quantities it is possible to imagine a sharp drop at a threshold maxx  corresponding to 
the total damage or loss that can be sustained by the structure.  

 
In addition to providing the mean annual frequency of events, the function )(λ x  provides the 
information described below.  

 
 Observe that )(λ x  denotes the mean number of earthquakes in a year that cause {x < X}, 
whereas 0λ  represents the mean number of all earthquakes in the same time period. It follows 
that the ratio 0λ/)(λ x  denotes the long-term fraction of earthquakes that produce an X  
exceeding the given threshold x . Thus, the function 
 

 
0λ
)(λ1)( xxF −=                     (2) 

 
represents the CDF of X  for a randomly selected earthquake, and its derivative 
 

 dx
xdxf )(λ

λ
1)( −=                     (3) 

 
represents the corresponding probability density function (PDF). Since 0λ)0(λ ≤  (the inequality 
applying when X  represents a DV or DM quantity), a plot of )(xF  may appear as in Figure 2. 
The discontinuity at 0=x  occurs when 0λ)0(λ < . As a result, the PDF of X , which is also 
depicted in Figure 2, includes a probability mass at 0=x , which is equal to the fraction of 
earthquakes that cause no damage or loss. 

 
The probability distribution shown in Figure 2 is that of X  for a randomly selected 

earthquake. Since a randomly selected earthquake is a lot more likely to have a low than a high 
intensity, this distribution is not the appropriate one for decision-making or for safety assessment. 
A quantity of interest for this purpose is the probability distribution of the largest X  that can 



occur in a given period of time, T , say the life of the structure. We denote this by TX . This 
distribution is of special interest when X  denotes an EDP or DM quantity.  

 
  
 
 
 
 
 
 
 
 
 

 
 
 

Figure 2.  Conceptual plots of the CDF and PDF of X . 
 
If the occurrences of {x < X} events in successive earthquakes can be considered to be 

statistically independent, then an approximation of the CDF of TX  is given by 
 

 ( ) [ ] T
T xFxX 0λ)(Pr ≅≤                    (4) 

 
where T0λ  represents the mean number of events during T . The approximation lies in the fact 
that the mean number of events is used. Alternatively, again under the assumption of statistical 
independence, the occurrences of {x < X} may be assumed to constitute Poisson events in time. 
In that case, the distribution of TX  is given by 
 
 ( ) [ ]{ })(1λexpPr 0 xFTxXT −−=≤                   (5) 
 
In general, the distributions in (4) and (5) are nearly the same in the tail region of x . 
 
 Dependence between successive occurrences of events {x < X}, however, may occur 
when uncertainties are present, which do not renew at each earthquake event. These 
uncertainties, denoted “non-ergodic” in Der Kiureghian (2005), may arise from the unknown 
characteristics of the structure, or from epistemic uncertainties present in the assessment of 
seismic hazard or in the modeling of the structural response. A correct formulation of the 
distribution of TX  for that case is presented in Der Kiureghian (2005) and will not be described 
here. It is noted, however, that, in the presence of non-ergodic uncertainties, the approximations 
in (4) and (5) generally produce conservative results, i.e., underestimate the probability of the 
event }{ xXT ≤ . This is because the statistical dependence between the successive {x < X} events 
is usually characterized by a positive correlation. (If the capacity of the structure is on the low 
side, then it is so for all earthquakes.) One quick way to account for this effect is to replace T0λ  
in (4) and (5) with a reduced value representing the mean number of equivalent statistically 
independent events. This kind of an approximation was used in Der Kiureghian (1980) in 
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developing approximate expressions for the mean and standard deviation of the extreme of a 
random process. Numerical studies can be performed to determine the reduction factor for 
various levels of non-ergodic uncertainties, possibly as a function of x . 
 

Now observe that for a variable ,X  the differential quantity )(λd)d(λ)(λ xxxx −=+−  
describes the mean number of events }d{ xxXx +≤<  per year. Thus, the product )(λd xx−  
describes the expected cumulative value of the outcomes of X  in this differential range in one 
year. Integrating over the entire range, one obtains the expected cumulative value of all X  values 
in one year 
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where, in the second line, we have used integration by parts. Thus, the area underneath the )(xλ  
versus x  curve gives the mean cumulative value of the X  values for all earthquakes occurring in 
one year. Obviously, the quantity ]E[ XΣ  is of great value when X  denotes a DV quantity, such 
as a dollar loss or down time, in which case it represents the mean total annual dollar loss or the 
mean total annual down time, respectively. These estimates clearly would be valuable in 
performance-based design or retrofit decisions. The quantity ][E XΣ  may also be useful for 
certain DM quantities, such as the dissipated energy or accumulated plastic strain or rotation in a 
member or joint. However, for an EDP quantity, the above measure may not be of much value. 
For example, if X  denotes an interstory drift, then ]E[ XΣ  is the mean of the sum of all 
interstory drift values occurring in one year. This measure has little relevance to reliability or 
safety of the structure. 
 
 In summary, we have shown that the function )(λ x , where x  may denote a DV, DM or 
EDP threshold, offers a wealth of information beyond the mean frequency of {x < X} events, 
which can be useful in performance-based earthquake engineering. Specifically, this function can 
be used to compute the distribution of X  for a random earthquake, as well as an approximation 
of the distribution of the extreme value of X  for all earthquakes occurring during a given period 
of time. Furthermore, this function can be used to compute the expected cumulative value of X  
values for all earthquakes in a given period of time. It is noted that, while the lower limit of )(xλ  
may not be important for computing the distribution of the extreme value TX , it is clearly 
important for computing the expected cumulative value ][E XΣ  in (6). In fact, as Figure 1 
suggests, the left end of )(xλ  dominates the area underneath the curve. The use of 0λ  as a 
benchmark for determining )0(λ , as described in the beginning of this section, is useful for 
accurately determining )(xλ  for small x  values.  
 
 



Computation of )|( imedpG  
 
 The predominant method for computing the distribution of an EDP for a given intensity 
threshold imIM =  is based on nonlinear time history analysis using recorded ground motions, 
commonly known as Incremental Dynamic Analysis or IDA (Vamvatsikos and Cornell 2002). 
For the given im, a disaggregation of the hazard leads to a pair of predominant magnitude and 
distance. Recorded ground motions are then selected that have similar magnitude and distance 
characteristics. The recorded motions are scaled to have the same im level. For example, if im 
represents the spectral acceleration at the fundamental period of the structure, then the recorded 
ground motions are all scaled to produce the same spectral acceleration at that frequency. 
Nonlinear structural dynamic analysis is then performed for the ensemble of selected recorded 
ground motions and the edp value for each record is determined. The median and coefficient of 
variation (c.o.v.) of the sample of edp values are estimated and a lognormal distribution is fitted 
to these statistics. Usually the same set of records is used for a range of im levels with varying 
scaling factors. The IDA has proven to be an effective method of approximate probabilistic 
analysis and has gained considerable popularity among researchers and practitioners interested in 
PBEE. The discussion in this section deals not with the method of analysis in IDA, but with the 
choice of recorded ground motions for the analysis.  
 
 In a parametric study such as IDA, it would be convenient to use simulated ground 
motions, or a stochastic representation of the ground motion. The choice for recorded ground 
motions is made, primarily because the design profession views simulated ground motions with 
suspicion and as not representing real earthquakes. In the author’s opinion, one could equally 
question whether scaled versions of recorded ground motions are realistic representations of 
earthquakes. However, there are other problems with the choice of recorded motions, as 
described below, which make the option of using simulated ground motions, or a stochastic 
representation of the ground motion, worthy of consideration.  
 
 The site of a given structure has its unique characteristics. These include the local soil 
conditions, the geologic setting of the site, the position of the site relative to seismic sources, and 
the characteristics of the surrounding ground, which forms the medium through which seismic 
waves propagate. It would be ideal if one would have a large set of recorded ground motions at 
the site of interest, from which one could select the desired sample of ground motions for each im 
level for IDA. Such a sample would be inherently consistent with the specific characteristics of 
the site. However, this is not the case, as no individual building site has a sufficient number of 
recorded ground motions to provide a workable sample. As a result, when the choice is limited to 
recorded ground motions, one is forced to use accelerograms that are recorded at many different 
sites. The problem is that such a sample of ground motions includes the variation inherent in the 
characteristics of the recording sites, which is irrelevant to the site of interest. In other words, the 
sample of multiple-site recorded ground motions potentially has more variability than one would 
expect from the sample ground motions at a given site. The result is a potential overestimation of 
the variability in the distribution of EDP for a given im. In contrast, a stochastic model of the 
ground motion can be constructed that is specific to the site of interest. Either simulation or 
nonlinear stochastic dynamics can then be used to compute the conditional distribution of the 
EDP.  
 



 To test the above hypothesis, the six-story building model in Figure 3 is considered. The 
building has nonlinear story stiffnesses, which are modeled by the Bouc-Wen hysteresis law. The 
hysteresis loops for the 1st and 6th story columns are also shown in Figure 3. Following the 
conventional approach, 10 recorded ground motions are selected (same as those used by Moehle 
et al. 2005) and are scaled to have the same spectral accelerations at the fundamental period of 
the structure based on its initial stiffness, which is 0.6 s. The scaled pseudo-acceleration spectra 
of the selected ground motions can be seen in Figure 4 (left), where the average of the 10 spectra 
is also shown. The selected im is the spectral acceleration of 1g at 0.6s period.  As the second 
alternative, the ground motion at the site is modeled as a stochastic process having 10s stationary 
strong-motion duration with a power spectral density characterizing the site of interest. Three 
models are considered: (a) a white noise excitation characterizing a rock site with a very broad 
spectrum of frequencies, (b) a wide-band Kanai-Tajimi power spectrum characterizing a firm 
ground with a predominant frequency of 2.5 Hz and a bandwidth parameter of 0.6, and (c) a 
narrow-band Kanai-Tajimi power spectrum characterizing a soft ground with a predominant 
frequency of 1.5 Hz and a bandwidth parameter of 0.3. The average pseudo-acceleration spectra 
of these motions, scaled at the fundamental period of the structure, are shown in Figure 4 (right) 
together with the average spectrum of the recorded motions. 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
 

Figure 3  Model of 6-story building with hysteresis loops of 1st and 6th story columns. 
 
 
 
 
 
 
 
 
 
 
 

Figure 4  Scaled pseudo-acceleration spectra of recorded (left)  
and stochastic (right) ground motions. 
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 Table 1 shows the estimated mean and c.o.v. of two selected EDPs, i.e., the peak values 
of the 1st and 6th interstory drifts, based on the two approaches. The statistics based the recorded 
motions are estimated from the sample of 10 nonlinear dynamic analysis using the selected 
recorded ground motions. The statistics for each of the stochastic inputs are computed by a 
nonlinear random vibration analysis method, the details of which will not be described here, 
except to stress that the accuracy of these estimates have been verified by Monte Carlo 
simulations.   
 

Table 1.  EDP statistics based on recorded and stochastic ground motions. 

EDP Input motion Mean, m C.o.v. 
Recorded motions 0.0263 0.390 
Stochastic: rock site  0.0252 0.206 

 firm site  0.0215 0.203 1st inter-story drift 

 soft site 0.0210 0.226 
Recorded motions 0.0238 0.334 
Stochastic: rock site  0.0385 0.164 

 firm site  0.0307 0.179 6th inter-story drift 

 soft site 0.0199 0.176 
 

 Two observations in Table 1 are noteworthy. First, we observe a variation in the mean 
EDP values depending on the stochastic model selected for the site. This is, of course, expected, 
since the characteristics of the site must surely influence the EDP value. For example, the mean 
value of the 6th interstory drift is much smaller for the soft site, because the motion for this site is 
deficient in higher frequencies that significantly contribute to this response. This kind of 
differentiation obviously is not possible with the recorded ground motions, unless one is able to 
select recorded motions that accurately reflect the conditions at the site of interest. The second 
important observation is that, regardless of the stochastic model used for the site, the c.o.v. of the 
EDP estimates based on the recorded ground motions is about twice the estimated c.o.v. based on 
the stochastic models. It is argued here that this large variability in the EDP estimate is partly due 
to the mixing of recorded ground motions from different sites. Such an overestimation of the 
variability could have a significant influence on the computed metrics for PBEE. 
 
 Another shortcoming of using recorded ground motions has to do with the robustness of 
the results. Specifically, independent analysts are likely to arrive at different estimates of the 
distribution of the EDP, depending on their selected recorded motions. With the stochastic 
model, once the model is selected, any independent analyst should arrive at the same result. 
 
 In summary, the conventional method of using recorded ground motions for the 
estimation of the conditional distribution of an EDP for a given im may grossly overestimate the 
variability in the EDP due to the mixing of ground motions from different sites. Furthermore, 
with this approach, it is not easy to account for the specific characteristics of the site, as recorded 
ground motions consistent with those characteristics may not be available. As an alternative, it is 
argued that a stochastic characterization of the ground motion specific for the site of interest may 
lead to a more realistic estimate of the distribution of EDP. This approach will also produce a 
more robust estimate of the distribution of an EDP. 
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