
Eduardo Miranda 
Dept. of Civil and Environmental Engineering 
Stanford University 
Terman Engineering Center, Rm 293 
Stanford, CA 94301-4020 
emiranda@stanford.edu 
 
Main research interests: 
Performance-based design, Displacement-based design, Seismic 
design and performance of nonstructural components  
 
 

 
Luis Esteva has made remarkable contributions to the field of Earthquake Engineering. His work 
in Probabilistic Seismic Hazard Analysis and in particular his pioneer 1967 paper are well 
known internationally. Here however, I would like to highlight some of his contributions in other 
areas of Earthquake Engineering. Of his many (hundreds) publications, I reproduce here two 
excerpts of a chapter Luis wrote in 1980 for a book edited by Emilio Rosenblueth. I first read 
this chapter when I was an undergraduate student at UNAM and over the years it has become 
one of my favorite papers. 

 
While referring to seismic codes at the beginning of his chapter Luis wrote [∗]: 
 

“Base shear coefficients and design response spectra are taken as measures of response parameters, 
as the latter are usually expressed in terms of accelerations and equivalent lateral forces acting on 
linear systems. But these variables are no more than indirect measures of system performance 
during earthquakes: they serve to control the values of more significant variables, such as lateral 
deflections of actual nonlinear systems, global and local ductilities, and safety margins with respect 
to instability failure (second-order effects). Because the relations of control variables to actual 
response are affected by the type and features of the structural system, better designs will be 
obtained if these relations are understood and accounted for, in contrast with blindly applying 
codified recommendations.”    

 
In the same chapter Luis also wrote the following: 
 

“Engineering design is rooted in society’s need to optimize. The general goal of optimization can 
be expressed in terms of direct, particular objectives: seismic design aims at providing adequate 
safety levels with respect to collapse in the face of exceptionally intense earthquakes, as well as 
with respect to damage to adjacent constructions; it also seeks to protect structures against 
excessive material damage under the action of moderate intensity earthquakes, to ensure simplicity 
of the required repair, reconstruction or strengthening works in case damage takes place, and to 
provide protection against the accumulation of structural damage during series of earthquakes.” 

 
                     
∗  Esteva, L. (1980), “Design: General”, chapter 3 in Design of Earthquake Resistant Structures, Ed. E. 

Rosenblueth, John Wiley & Sons, Inc., New York, pp. 54-99. Also available in Spanish through IMCYC. 



“Achievement of the foregoing objectives requires much more than dimensioning structural 
members for given internal forces. It implies explicit consideration of those objectives and of the 
problems related with nonlinear structural response and with the behavior of materials, members, 
and connections when subjected to several cycles of high-load reversals. It implies as well 
identifying serviceability conditions and formulating acceptance criteria with respect to them.” 

“Establishment of design conditions follows cost-benefit studies, where the initial costs required to 
provide given safety levels and degrees of protection with respect to material losses are compared 
with the present value of the expected consequences of structural behavior. This is obtained by 
adding up the costs of failure and damage that may occur during given time intervals, multiplied by 
their corresponding probabilities and by actualization factors that convert monetary values at 
arbitrary instants in the future into equivalent values at the moment of making the initial 
investment.” 

“Let D be the cost of damage caused by an earthquake on a structure, which includes damage to the 
structure, its contents as well as all other consequences (such as loss of human lives and indirect 
effects) expressed in monetary terms, then the probability density function of D every time a 
significant event takes place is 
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where Q(y) is the conditional cumulative probability distribution of the earthquake intensity given 
that a significant event has occurred, and fD|Y(d|y) the probability density function of D conditional 
to every possible value of earthquake intensity.” 

 

The first excerpt describes what many years later would become known as “displacement-based 
design” while the second excerpt published 25 years ago describes, of course, what we now 
know as “performance-based design”. 

From these paragraphs it is clear that Luis was back then, but continues to be today, at the 
forefront of Earthquake Engineering. For those who have not read this chapter, especially for 
those in the newer generations of earthquake engineering students, I strongly recommend 
reading it and learning more about the extraordinary humble man who wrote it.  

I feel extremely honored to have been invited to participate in this symposium on his honor and 
more so to be counted as one of his friends. Hats off to you Luis! 

 

 
Eduardo Miranda 
September 2005  

 
 
 
 



 
 

SIMPLIFIED ANALYSIS TOOLS FOR RAPID SEISMIC EVALUATION OF  
EXISTING BUILDINGS IN URBAN AREAS  

 
 
 

ABSTRACT 
 
 Simplified analysis tools that make feasible rapid assessment of large inventories 

buildings in urban areas with a minimum amount of information about the 
buildings are presented. The simplified seismic analysis tools use a continuum 
model consisting of a flexural beam coupled with a shear beam. The model 
permits to obtain estimates of the seismic response of multi-story buildings with 
only three parameters, that is, only one parameter in addition to the two that are 
required to define a linear elastic single degree of freedom system. The simplified 
method is computationally very efficient and permits to obtain estimates of the 
response of a multi-story building in fractions of a second, hence providing an 
excellent tool to incorporate record-to-record variability and modeling uncertainty 
in probabilistic performance assessments of existing buildings. Results of lateral 
deformation time histories, floor acceleration time histories and floor response 
spectra computed with the simplified method have been compared to those 
measured during earthquakes in more than 80 instrumented buildings in 
California. Evaluation of the results indicates that the proposed analysis tool 
provides relatively good results of not only peak values of response parameters 
but in most cases also of time history results. Based on the simplified model two 
new type of spectra are presented. These spectra, referred to as generalized 
interstory drift spectrum and generalized building peak acceleration, have 
ordinates that provide the intensity of parameters closely correlated with 
structural and nonstructural damage. 

  
  

Introduction 

 
Seismic performance assessment of large inventories of buildings has traditionally been 

done by estimating performance through the use of empirical correlations between peak ground 
motions parameters such as peak ground acceleration (PGA) and peak ground velocity (PGV) 
with modified Mercalli intensity. In the United States the best known example of this approach is 
the “ShakeMap” (Wald, et al. 1999a). The Instrumental Intensity map used in ShakeMap is 
based on a combined regression of recorded peak acceleration and velocity amplitudes (Wald, et 
al. 1999c). The empirical relationships between PGA and PGV with MMI used in ShakeMap are 
based on a much larger data set than that used by Trifunac and Brady (1975) who developed one 
of the first relationships between peak ground motion parameters and MMI. Unfortunately, 
empirical correlations of peak ground acceleration and peak ground velocity with the Modified 
Mercalli Intensity are characterized by a very large scatter of data points. For example, Trifunac 
and Brady (1975) reported that, for a given intensity, the scatter was equal to about one order of 



magnitude in PGA or PGV. Despite using a significant larger data set, the empirical relationships 
obtained by Wald et al. (1999c) show approximately the same scatter. For example, peak ground 
acceleration ranging from 5 cm/s2 to 450 cm/s2 produced a MMI of V. Similarly, according to 
the data collected by Wald et al. (1999c), areas subjected to peak ground accelerations of 300 
cm/s2 (31%g) could be associated with Modified Mercalli Intensities of V, VI, VII or VIII. This 
range of MMI’s corresponds to distinctly damage descriptions ranging from “very light damage” 
to “moderate to heavy damage”, making performance predictions not very reliable. Although 
correlation is improved when using peak ground velocity, the correlation remains relatively low.  

Several studies have shown that rather than estimating seismic performance directly from 
peak ground motion parameters, a better estimation of earthquake damage can be obtained by 
first obtaining an estimate of the building seismic response and then obtaining an estimate of 
damage from peak structural response parameters. An improved performance assessment can be 
obtained if single-degree-of-freedom (SDOF) systems are used as analytical models to estimate 
building response. This approach, which was pioneered by Luis Esteva and Emilio Rosenblueth 
in the late 60’s, are now widely used all over the world. Tools for seismic risks of urban areas in 
the U.S. (e.g. HAZUS) and in Europe (e.g., EU-Risk) used this approach in which building 
damage is estimated from response spectral ordinates (peak responses of SDOF systems). 

Although SDOF systems provide a much better a much better basis for estimating possible 
damage in buildings than peak ground acceleration or peak ground velocity, they still have a 
number of important disadvantages. Among others, SDOF systems cannot account for the 
contribution of higher modes, which are particularly important for predicting acceleration 
demands in buildings. Furthermore, even if displacements response spectrum ordinates are used, 
they only provide a measure of the overall lateral deformation in the building and do not take 
into account concentrations in lateral deformations in certain stories that usually occur in 
buildings.  

It is well know that structural damage and many kinds of nonstructural damage in buildings 
are the result of lateral deformations. In particular, several studies have concluded that the 
structural response parameter that is best correlated with seismic damage is the peak interstory 
drift ratio, which is defined as the difference in lateral displacements in between two consecutive 
floors normalized by the interstory height. Similarly, other studies have shown that damage to 
contents and many types of nonstructural components is primarily related to peak floor 
accelerations and to floor spectral ordinates. Hence, much better performance estimates can be 
achieved by first computing peak interstory drift demands and peak floor acceleration demands. 
However, conventional analysis techniques (e.g., finite element models) require a great deal of 
time to generate building models and to run the analyses which makes the process extremely 
time consuming. Furthermore, the information that is required to build these improved building 
models is usually not available to the engineers who are interested in assessing the seismic 
performance of large inventories of buildings.  

The objective of this paper is to present new analysis tools for rapid assessment of building 
response. The new analysis tools are based on a continuous model that consists of a combination 
of a flexural beam and a shear beam. By modifying a single parameter this model can consider 
lateral deformations varying from those of a flexural beam all the way to those of shear beam. 
Hence, it permits to account for a wide range of modes of lateral deformation that represent more 



closely those occurring in multistory buildings. Mode shapes, modal participation factors and 
period ratios required to compute the response of the model are all computed with closed-form 
solutions and are a function of only one parameter. This provides a highly efficient 
computational tool which at the same time only requires a minimum amount of information 
about the building whose seismic response is being assessed, making it then particularly valuable 
when evaluating large inventories of buildings. New types of spectra and response maps based 
on this building model are also presented.  

 
Simplified Building Model 

The simplified model consists of a linear elastic continuum model. Continuum models have 
been proposed before for approximating the response of buildings to wind or seismic forces. For 
a review of previously-proposed models the reader is referred to Miranda and Taghavi (2005) 
and Miranda and Akkar (2005).  The proposed continuum model consists of a combination of a 
flexural cantilever beam and a shear cantilever beam deforming in bending and shear 
configurations, respectively (Figure 1). It is assumed that along the entire length of the model, 
both beams undergo identical lateral deformations. Furthermore, mass and lateral stiffness are 
assumed to remain constant along the height of the building.  

As shown by Miranda and Akkar (2005), the response of uniform shear-flexural model 
shown in Figure 1 when subjected to an horizontal acceleration at the base üg(t) is given by the 
following partial differential equation:  
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where  ρ is the mass per unit length in the model, H is the total height of the building, u(x,t) is the 
lateral displacement at non-dimensional height  x=z/H  (varying between zero at the base of the 
building and one at roof level) at time t,  c is the damping coefficient per unit length, EI is the 
flexural rigidity of the flexural beam and α  is the lateral stiffness ratio defined as  

EI
GAH=α                                                    (2) 

where GA is the shear rigidity of the shear beam. The lateral stiffness ratio, α is a dimensionless 
parameter that controls the degree of participation of overall flexural and overall shear 
deformations in the continuous model and thus, it controls the lateral deflected shape of the 
model. A value of α equal to zero represents a pure flexural model (Euler-Bernoulli beam) and a 
value of α  → ∞ corresponds to a pure shear model. Intermediate values of α correspond to 
multistory buildings that combine overall shear and flexural lateral deformations. 

The mode shapes of the simplified model are given by (Miranda and Taghavi, 2005): 
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where βi and ηi are nondimensional parameters for the ith mode of vibration which are given by 
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Figure 1.  Simplified continuum model to estimate the seismic response of buildings. 
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and γi is the eigenvalue of the ith mode of vibration corresponding to the ith root of the following 
characteristic equation: 
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Periods of vibration corresponding to higher modes can be computed as a function of the 
fundamental period of vibration of the building T1 by using period ratios computed as 
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Since the masses are assumed to remain constant, the modal participation factors Γi can be 
computed with the following equation: 
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Integrals shown in equation (8) can be solved in closed-form solution. Readers interested in 
these closed-form solutions are referred to Miranda and Akkar (2005). As shown by these 
equations, mode shapes and modal participation factors, which control the spatial distribution of 
seismic demands, are fully defined only on a single parameter, the lateral stiffness ratio α.  

While assuming the mass to remain constant along the height of buildings is reasonable in 
most cases, assuming that the lateral stiffness remains constant along the height of the building is 
perhaps only a reasonable assumption for one to three-story buildings. However, Miranda and 
Taghavi (2004) have shown that the product of modal shapes and modal participation factors as 
well as period ratios are relatively robust and are not significantly affected by reductions in 



lateral stiffness. In the same study, it was similarly shown that reduction in masses along the 
height of the building also do not affect significantly the dynamic characteristics of the model. 
Although Miranda and Taghavi (2005) provided expressions to compute the dynamic 
characteristic of non-uniform buildings, they concluded that in many cases, using the dynamic 
characteristics of uniform models could provide reasonable approximations to the dynamic 
characteristics of non-uniform models. 

Relative Displacements 

The contribution of the ith mode of vibration to the lateral displacement (relative to the 
ground) at non-dimensional height x=z/H at time t is given by 

)()(),( tDxtxu iiii φΓ=                                                      (9) 

where Γi is the modal participation factor of the ith mode of vibration, φi(x) is the amplitude of 
ith mode at nondimensional height x, and Di(t) is the relative displacement response of a SDOF 
system, with period Ti and modal damping ratio ξi corresponding to those of the ith mode of 
vibration, subjected to ground acceleration üg(t). The product Γiφi(x) controls the spatial 
variation of the contribution of the ith mode to the total response, while Di(t) controls its time 
variation. Assuming that the structure remains elastic and that it has classical damping, the 
displacement at non-dimensional height x=z/H at time t is given by 
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where m is the number of modes contributing significantly to the response. Taghavi and Miranda 
(2005) have shown that for most buildings with 30 or less stories only three modes are necessary 
for each direction. More recently, Reinoso and Miranda (2005) have shown that for high rise 
buildings and response parameters strongly influenced by higher modes (such as floor 
accelerations) including five or six modes may be necessary.  

Taghavi and Miranda (2005) compared the response computed with the simplified model 
to that computed with detailed finite-element models of a ten-story steel moment resisting frame 
building and a twelve-story reinforced concrete building whose properties were available in the 
literature. Additionally, they compared the response computed with the model to that recorded in 
four instrumented buildings in California that have been subjected to earthquakes. In all cases, it 
was shown that the simplified model provided very good results. More recently, Reinoso and 
Miranda (2005) validated the model by comparing the response computed with the simplified 
continuous model to that recorded in five high rise buildings in California in various 
earthquakes. 

The simplified method of analysis is currently being evaluated by comparing the seismic 
response recorded in a large number of instrumented buildings in California to that computed 
with the model. Figures 2 to 5 show examples comparing relative displacement (relative to the 
base of the building) time histories of five instrumented buildings in California. All of these 
analyses have been conducted assuming that the lateral stiffness and mass of the continuous 
system remains constant along the height of the building, and models were fully defined only 
using three parameters, namely the fundamental period of vibration of the building, a damping 



ratio that characterizes the damping in the model and the lateral stiffness ratio. In equations 9 
and 10 one could use different damping ratios for computing Di(t) for each mode. However, for 
simplicity and in order to keep the number of parameters to a minimum, here it has been 
assumed the same damping ratio for all modes.  Furthermore, the base of the model has been 
assumed as fixed and torsional deformations have been neglected. As shown in these figures, 
despite the important simplifications, the model is capable of capturing relatively well the peak 
and the most important features of the response of the buildings. 

                      
 

   Figure 2. Sensor location and photograph of a 13-story RC building in Hayward California. 
 

ROOF

-5
-4
-3
-2
-1
0
1
2
3
4
5

0 5 10 15 20 25 30 35 40
Time [s]

Displ. [cm]

 CHAN3 - CHAN16
Computed

5TH FLOOR

-5
-4
-3
-2
-1
0
1
2
3
4
5

0 5 10 15 20 25 30 35 40
Time [s]

Disp. [cm]

 CHAN5 - CHAN16
Computed

2ND FLOOR

-5
-4
-3
-2
-1
0
1
2
3
4
5

0 5 10 15 20 25 30 35 40
Time [s]

Disp. [cm]

 CHAN8 - CHAN16
Computed

1ST FLOOR

-5
-4
-3
-2
-1
0
1
2
3
4
5

0 5 10 15 20 25 30 35 40
Time [s]

Disp. [cm]

 CHAN11 - CHAN16
Computed

 
Figure 3. Comparison of computed and recorded relative displacements in the NS components of 

the 13-story building in Hayward California during the 1989 Loma Prieta earthquake. 



           
 

Figure 4. Sensor location and photograph of a 24-story RC building in Oakland California. 
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Figure 5.   Comparison of computed and recorded relative displacements in the NS components 
of the 24-story building in Oakland California during the 1989 Loma Prieta 
earthquake. 



Interstory Drift Ratios 

The interstory drift ratio at the jth story can be computed as 
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where hj is the floor to floor height of the jth story, and φ(xj+1) and φ(xj) are the mode shape 
values corresponding to the jth+1 and jth floor computed with equation (3), respectively. If the 
interstory height is assumed to remain constant along the height of the building, it can be shown 
that for buildings with 6 or more stories a relatively good estimation of the interstory drift at 
non-dimensional height x=z/H at time t can be computed with 
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where H is the total building height above ground, �(x,t) is the rotation in the simplified model 
at height x at time t, and φi

’(x) is the first derivative of the ith mode shape φi(x) with respect to 
non-dimensional height x. The derivative of the mode shapes with respect to non-dimensional 
height x is obtained by taking the derivative of Eq. (3) with respect to x as follows:  
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Generalized Interstory Drift Spectrum 

Motivated by the relatively good results produced by the model, Miranda and Akkar (2005) 
developed a new type of spectra that, unlike conventional response spectrum, the ordinates 
provide a direct estimation of peak interstory drifts that are likely to occur in buildings. The new 
spectrum, referred to as the generalized interstory drift spectrum (GIDS) can be considered as an 
extension of Iwan’s drift spectrum (Iwan, 1997). However, unlike Iwan’s drift spectrum which is 
only applicable to buildings that can be modeled as shear beams, the GIDS is capable of 
considering a wide range of buildings ranging from those that can be modeled as flexural beams 
all the way to those that can be modeled as shear beams. Besides being able to consider a wide 
range of types of deformation the GISD has other advantages. For example, the GISD is based 
on modal analysis techniques that are familiar to structural engineers while Iwan’s spectrum is 
based on wave propagation techniques that are typically not known to structural engineers. 
Furthermore, the GIDS uses a classical damping which as shown in figures 3 and 5  is capable of 
reproducing the recorded response of buildings and avoids the problems that are encountered 
when using the damping model used in the conventional drift spectrum (the reader is referred to 
Kim and Collins, 2002 or Miranda and Akkar, 2005 for a description of these problems). 

The ordinates of the generalized interstory drift spectrum (GIDS) are defined as the 
maximum peak interstory drift demand over the height of the building and are computed as 
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The generalized interstory drift spectrum is a plot of the fundamental period of the building 
in the abscissas versus IDRmax in the ordinates. Similarly to the response spectrum, the GIDS 
provides seismic demands for a family of systems with different periods of vibration. However, 
instead of having ordinates of maximum relative displacement, maximum relative velocity or 
maximum acceleration of SDOF systems, the GIDS provides a measure of peak interstory drift 
demands, which is a demand parameter that is better correlated with damage. In particular, the 
GIDS provides a rapid estimation of peak interstory drift demand in buildings with different 
periods of vibration.  

If the same damping ratio is used for the m contributing modes, then the model is fully 
defined by using only four parameters: (1) the fundamental period of vibration of the building, 
T1; (2) a modal damping ratio that represents the damping ratio in the building, ξ; (3) the lateral 
stiffness ratio α; and (4) the building height, H. Since the derivative of the modes, modal 
participation factors and period ratios can be computed in closed-form solution, the GIDS is 
computationally very efficient, requiring just a few seconds in most personal computers. If 
empirical relations between building height and fundamental period are used, the number of 
parameters is then reduced from four to three. 
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Figure 6. Influence of α on generalized interstory drift spectra (after Miranda and Akkar, 2005). 

 

Figure 6 presents generalized interstory drift spectra for four different values of α values 
computed for the NS component of the Rinaldi Receiving Station from the 1994 Northridge 
earthquake and the N49W component of the Takatori Station from the 1995 Hyogo-ken-Nambu 
(Kobe) earthquake. Results presented in this figure were computed using Eqs. (13) and (14) 
considering the first six modes of vibration (i.e., m=6). For a given fundamental period of 
vibration, the total height of the model needed in Eq. (13) was computed using the relationship 
used for steel moment-resisting frames in the 1997 UBC code (ICBO, 1997), namely, 
T1=0.0853H0.75, where H is in meters.  It can be seen that the influence of α is relatively small 
for fundamental periods of vibration smaller than 1.5s. However, for longer fundamental periods 
of vibration the differences become larger. In particular, it can be seen that interstory drift 
demands can be larger or smaller than those computed with a model corresponding 
approximately to a shear beam (α=650) indicating that Iwan’s drift spectrum may underestimate 
or overestimate drift demands for buildings that cannot be modeled as shear beams. 



Floor Accelerations Demands 

While structural damage and many kinds of nonstructural damage are primarily caused by 
interstory drift demands, Miranda and Taghavi (2005) have shown that damage to building 
contents, ceilings, light fixtures, piping and many other types of nonstructural components is 
primarily related to peak floor accelerations and to floor spectral ordinates. The simplified model 
shown in figure 1 can also be used to estimate floor acceleration demands in buildings. Unlike 
lateral displacements or interstory drifts that are often dominated by the fundamental mode of 
vibration, floor accelerations are typically strongly influenced by higher mode response even 
more building of moderate height. 

 The total floor acceleration at non-dimensional height x=z/H can be computed as 
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where )(tDi
&& is the relative acceleration of a SDOF system with a period of vibration equal to that 

of the ith-mode of vibration of the structure. In the proposed method, the damping ratio in all 
modes is assumed to be the same and equal to a damping ratio that approximately characterizes 
the damping in the structure. It should be noted that Eq. (15) would be exact for the building 
shown in figure 1 only if the actual modes shapes, frequencies of vibration and modal 
participation factors of the building are used, and only if the summation included an infinite 
number of modes. Therefore, the main sources of error in the proposed method when applied to 
real buildings responding elastically are: (a) truncation error (e.g., only considering the first three 
modes of vibration); (b) use of approximate mode shapes and approximate modal participation 
factors; and (c) simplified representation of the damping in the structure.  

Equation (15) can be also be written in terms of, more familiar, absolute modal 
acceleration times histories as follows: 
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where )(tDt
i
&& is the absolute acceleration time history of a SDOF system with a period of vibration 

equal to that of the ith-mode of vibration of the structure.  

Peak floor accelerations computed with equation (15) for four buildings are shown in 
figure 7. In this figure peak floor accelerations at instrumented floors have been normalized by 
the peak acceleration recorded at the base of the building and are indicated in the figure by red 
squares. Also shown in the figure are the normalized peak floor acceleration demands computed 
with the proposed simplified method. It can be seen that again, the proposed method is capable 
reproducing relatively well the variation of acceleration demands along the height of the 
buildings. Furthermore, it can be seen that the distribution of acceleration demands may differ 
considerably from the linear variation that is commonly assumed in many building codes. 
Taghavi and Miranda (2003) have shown that, unlike present U.S. recommendations which for 
the design of nonstructural components assume that the variation of floor acceleration demands 
is period-independent, this variation is strongly influenced by the fundamental period of 
vibration of the structure and also, but to a lesser degree, by the lateral stiffness ratio. 
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Figure 7. Comparison of computed and recorded variation of peak floor acceleration demands in 
four reinforced-concrete buildings located in California. 

 
While capturing peak floor accelerations with simplified models and a limited number of 

parameters in building is challenging, the estimation of floor acceleration time histories and 
ordinates of floor spectra are even more challenging as they depend on an accurate estimation of 
frequencies of vibration of higher modes. In the proposed method the same parameter is used to 
control the spatial variation of the motion within the building and period ratios, therefore it is 
interesting to explore the level of accuracy that can be obtained with the proposed simplified 
analysis method when estimating these response parameters that are strongly influenced by 
higher modes. Figures 17 to 20 show comparison of recorded floor acceleration time histories 
with those computed with the approximate method and comparison of 5% damped floor spectra 
computed with recorded and approximate acceleration time histories. As shown in these figures 
the model is able to capture quite well these response parameters as well. 
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Figure 8. Comparison of computed and recorded acceleration demands in the EW 

components of a 9-story building in San Bruno California. 
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Figure 9.  Comparison of computed and recorded acceleration demands in the NS 
components of a 13-story building in Hayward California. 

 

Rapid Damage Assessment 

Many studies have indicated that interstory drift ratios are correlated very well with 
structural damage in buildings. Because of its many computational advantages, the generalized 
interstory drift spectrum described in the previous sections, can be used in rapid damage 
assessment at urban areas with wide range of structural systems for a major earthquake event. 
This can be accomplished by analyzing continuous models corresponding to different structural 
systems at instrumented locations. A typical example is presented for the Los Angeles 
Metropolitan area in Figure 10. This three dimensional contour map was prepared by using the 
ground motions recorded at 91 strong motion stations that were triggered during the 1994 
Northridge earthquake in the city of Los Angeles and San Fernando Valley. 

 Ground motions were downloaded from the website of COSMOS Virtual Data Center 
(http://db.cosmos-eq.org) and all of them are either free-field records or ground motions 
recorded at the ground floor of one-story buildings. Figure 10 shows interstory drift demands for 
buildings with fundamental periods T1=1.0s corresponding to mid-rise moment-resisting 
reinforced concrete frame buildings in this region. The value of α was taken as 12.5 and the 



mean fundamental period empirical relationship by Chopra and Goel (2000) was used to 
compute the building height as a function of the fundamental period of vibration. Mean 
interstory drift ratios of both horizontal components are computed at each recording station using 
5 percent damping ratio.  

The map presented in Figure 10 indicates that for the given distribution of strong motion 
stations, frame buildings with fundamental periods of approximately 1.0s located in the northern 
portion of the San Fernando Valley were subjected to large interstory drift demands and 
therefore more susceptible to serious structural/nonstructural damage compared to those of 
stiffer or more flexible buildings in the same region. Another important observation from this 
map is the consistency of computed interstory drift demands with the reported rupture direction.  

It should be noted that even though the elaboration of the map shown in figure 10 involves 
the computation of the seismic response of both directions of building models located at more 
than 90 recording stations, they can be computed in personal computers within a few minutes 
after an earthquake provided that ground motions are sent to a central location using telemetry. 
These maps can provide a valuable tool in rapid damage assessment as well as for planning 
purposes using various ground motion scenarios.  

Instead of placing an identical structure at each location where a ground motion recording 
instrument is located, it is possible to use the ground motions recorded in the city to conduct an 
analysis of large number of existing structures within the city, hence extending the concept of 
structural building analysis to structural “city” analysis. 

 

          

Figure 10. Maximum IDRmax contour map for moment-resisting buildings with fundamental 
periods of vibration of 1.0s computed using 91 recording stations deployed in the 
Los Angeles metropolitan area and triggered during the 1994 Northridge earthquake. 

T1 = 1.0s



Summary and Conclusions 

New analytical tools for rapid building seismic response estimation aimed at rapid seismic 
performance assessment of large inventories buildings in urban areas have been presented. The 
simplified seismic analysis tools make use of continuum models consisting of a flexural beam 
coupled with a shear beam. Unlike sophisticated analysis models that require a significant 
amount of information and are computationally very demanding, the proposed analytical tool is 
fully defined by only three or four parameters. That is, only one or two parameters in addition to 
those required to define a linear elastic single degree of freedom system. Seismic response 
computation using the proposed analytical tool takes only fractions of a second in most personal 
computers, hence allows for the rapid assessment of hundreds of buildings, within few minutes 
after an earthquake. A typical case study from the 1994 Northridge earthquake was presented to 
demonstrate how the proposed procedure can be used as an efficient tool to serve for such a 
purpose. 

It should be noted that the proposed analytical tools have not been developed as 
replacement of more refined and accurate models. The simplified models can be particularly 
helpful for the following applications: 

1. Screening tool to identify buildings that are likely candidates for more detailed analyses.  

2. Screening tool to identify buildings and urban regions that are more likely to be damaged 
in future earthquakes 

3. As a tool to conduct parametric studies to identify structural parameters or ground motion 
parameters that increase seismic demands on buildings 

4. Planning tool for emergency managers and city officials by using motions from previous 
ground motions or synthetic ground motions from possible future events. 

5. For loss estimation of large inventories of building by insurance or reinsurance companies. 

6. To provide early performance estimates within minutes of a seismic event. 
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